Aims and background: To evaluate the safety and efficacy of MicroPulse® transscleral laser therapy (MP-TLT) using the revised MicroPulse P3® (MP3) probe compared to the original probe.
Materials and methods: A retrospective study of 122 consecutive eyes of 99 glaucoma patients who received MP-TLT with a minimum of 12 months follow-up. The primary outcome was success at 12 months, defined as final IOP <18 mm Hg and either IOP reduction of >20% or any medication reduction, without any adverse events or secondary surgical interventions (SSIs) within 12 months.
Results: Ninety-five eyes in 75 patients were treated with the original probe, and 27 eyes of 24 patients were treated with the revised probe. The mean total energy and fluence used were 113.6 joules (J) and 54.3 J/cm2 for the original probe, and 79.9 J and 140.1 J/cm2 for the revised probe. Subjects were mostly white with primary open-angle glaucoma and a mean age of 70.3 years. Significantly more eyes with advanced glaucoma were treated with the revised probe compared to the original probe (p < 0.001). At baseline, mean IOP was 23.0 ± 7.5 on 2.94 ± 1.19 medications for the original probe compared to 22.6 ± 6.9 (p = 0.799) on 3.15 ± 1.32 medications (p = 0.429) for the revised probe. At 12 months, mean IOP was 17.9 ± 5.9 mm Hg (21.4% reduction) on 2.55 ± 1.40 medications (13.0% reduction) for the original probe compared to 14.8 ± 5.7 mm Hg (29.7% reduction, p = 0.063) on 3.07 ± 1.49 medications (2.2% reduction, p = 0.279) for the revised probe. Thirty-one of 95 eyes (32.6%) and 11 of 27 eyes (40.7%) treated with original and revised MP-TLT, respectively, achieved success at 12 months (p = 0.435). The rate of SSIs was 12% and similar between groups (p = 0.833). Significantly more eyes treated with the original probe underwent repeat MP-TLT within 12 months (44.2 vs 22.2%, p = 0.049). No adverse events occurred in either group.
Conclusion and clinical significance: The revised probe for the MP3 device may result in an improved and longer-lasting IOP-lowering effect compared to the original probe, while maintaining an excellent safety profile.
Lim R. The surgical management of glaucoma: a review. Clin Exp Ophthalmol 2022;50(2):213–231. DOI: 10.1111/ceo.14028
Ndulue JK, Rahmatnejad K, Sanvicente C, et al. Evolution of cyclophotocoagulation. J Ophthalmic Vis Res 2018;13(1):55–61. DOI: 10.4103/jovr.jovr_190_17
Liu GJ, Mizukawa A, Okisaka S. Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd:YAG laser cyclophotocoagulation. Ophthalmic Res 1994;26(2):65–79. DOI: 10.1159/000267395
Lanzagorta-Aresti A, Montolío-Marzo S, Davó-Cabrera JM, et al. Transscleral versus endoscopic cyclophotocoagulation outcomes for refractory glaucoma. Eur J Ophthalmol 2021;31(3):1107–1112. DOI: 10.1177/1120672120914230
Ganesh SK, Rishi K. Necrotizing scleritis following diode laser trans-scleral cyclophotocoagulation. Indian J Ophthalmol 2006;54(3):199–200. DOI: 10.4103/0301-4738.27074
Abdelmassih Y, Tomey K, Khoueir Z. Micropulse transscleral cyclophotocoagulation. J Curr Glaucoma Pract 2021;15(1):1–7. DOI: 10.5005/jp-journals-10078-1298
Ma A, Yu SWY, Wong JKW. Micropulse laser for the treatment of glaucoma: a literature review. Surv Ophthalmol 2019;64(4):486–497. DOI: 10.1016/j.survophthal.2019.01.001
Tan AM, Chockalingam M, Aquino MC, et al. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol 2010;38(3):266–372. DOI: 10.1111/j.1442-9071.2010.02238.x
Aquino MC, Lim D, Chew PT. Micropulse P3TM (MP3) laser for glaucoma: an innovative therapy. J Curr Glaucoma Pract 2018;12:51–52. DOI: 10.5005/jp-journals-10028-1244
Gavris MM, Olteanu I, Kantor E, et al. IRIDEX MicroPulse P3: innovative cyclophotocoagulation. Rom J Ophthalmol 2017;61:107–111. DOI: 10.22336/rjo.2017.20
Grippo TM, de Crom RMPC, Giovingo M, et al. Evidence-based consensus guidelines series for MicroPulse transscleral laser therapy: dosimetry and patient selection. Clin Ophthalmol 2022;16:1837–1846. DOI: 10.2147/OPTH.S365647
Available from: https://www.iridex.gcs-web.com/news-releases/news-release-details/iridex-launches-revised-micropulse-p3r-device-glaucoma.
Akiyama T, Fujishiro T, Sugimoto K, et al. Short-term outcomes of micropulse transscleral laser therapy using the revised delivery probe in refractory glaucoma. Jpn J Ophthalmol 2022;66:549–558. DOI: 10.1007/s10384-022-00938-9
Hadjokas N, Dosakayala N, Alpert S, et al. Settings and effectiveness of the revised probe compared to the original probe for micropulse transscleral cyclophotocoagulation. Lasers Med Sci 2024;39(1):136. DOI: 10.1007/s10103-024-04086-z
Available from: https://www.aao.org/Assets/5adb14a6-7e5d-42ea-af51-3db772c4b0c2/636713219263270000/bc-2568-update-icd-10-quick-reference-guides-glaucoma-final-v2-color-pdf.
Grippo TM, Sanchez FG, Stauffer J, et al. MicroPulse® transscleral laser therapy—fluence may explain variability in clinical outcomes: a literature review and analysis. Clin Ophthalmol 2021;15:2411–2419. DOI: 10.2147/OPTH.S313875
Rajendrababu S, Senthilkumar VA, Tara TD, et al. Short-term outcomes of micropulse transscleral cyclophotocoagulation as a primary versus additional therapy in eyes with uncontrolled glaucoma. Indian J Ophthalmol 2023;71(1):140–145. DOI: 10.4103/ijo.IJO_1289_22
Kuchar S, Moster MR, Reamer CB, et al. Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci 2016;31(2):393–396. DOI: 10.1007/s10103-015-1856-9
Laruelle G, Pourjavan S, Janssens X, et al. Real-life experience of micropulse transscleral cyclophotocoagulation (MP-TSCPC) in advanced and uncontrolled cases of several glaucoma types: a multicentric retrospective study. Int Ophthalmol 2021;41(10):3341–3348. DOI: 10.1007/s10792-021-01896-w
Kotula MA, Paust K, Wirdemann A, et al. Glaucoma treatment by transscleral cyclophotocoagulation in micropulse technology in a low-income setting. Ophthalmologie 2022;119(12):1275–1279. DOI: 10.1007/s00347-022-01668-6
Zaarour K, Abdelmassih Y, Arej N, et al. Outcomes of micropulse transscleral cyclophotocoagulation in uncontrolled glaucoma patients. J Glaucoma 2019;28(3):270–275. DOI: 10.1097/IJG.0000000000001174
Checo LA, Dorairaj S, Wagner IV, et al. Clinical outcomes of micropulse transscleral laser therapy with the revised p3 delivery device. J Curr Glaucoma Pract 2024;18(1):10–15. DOI: 10.5005/jp-journals-10078-1427
Lim EJY, Cecilia AM, Lim DKA, et al. Clinical efficacy and safety outcomes of micropulse transscleral diode cyclophotocoagulation in patients with advanced glaucoma. J Glaucoma 2021;30(3):257–265. DOI: 10.1097/IJG.0000000000001729
Balendiran V, Landreneau J, An J. MicroPulse transscleral laser therapy dosimetry utilizing the revised P3 delivery device: a randomized controlled trial. Ophthalmol Glaucoma 2022;6:283–290. DOI: 10.1016/j.ogla.2022.09.004
Sanchez FG, Peirano-Bonomi JC, Grippo TM. Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters. Med Hypothesis Discov Innov Ophthalmol 2018;7(3):94–100. PMID: 30386797.
Sanchez FG, Peirano-Bonomi JC, Barbosa NB, et al. Update on micropulse transscleral cyclophotocoagulation. J Glaucoma 2020;29(7):598–603. DOI: 10.1097/IJG.0000000000001539
Marchand M, Singh H, Agoumi Y. Micropulse trans-scleral laser therapy outcomes for uncontrolled glaucoma: a prospective 18-month study. Can J Ophthalmol 2021;56(6):371–378. DOI: 10.1016/j.jcjo.2021.01.015
Grippo TM, Töteberg-Harms M, Giovingo M, et al. Evidence-based consensus guidelines series for MicroPulse transscleral laser therapy—surgical technique, post-operative care, expected outcomes and retreatment/enhancements. Clin Ophthalmol 2023;17:71–83. DOI: 10.2147/OPTH.S389198