Citation Information :
Dada T, Mahalingam K, Bhartiya S. Reversing Aging and Improving Health Span in Glaucoma Patients: The Next Frontier?. J Curr Glaucoma Pract 2024; 18 (3):87-93.
Gc K, Mahalingam K, Gupta V, et al. Stress and allostatic load in patients with primary open angle glaucoma. J Glaucoma 2024;33(2):87–93. DOI: 10.1097/IJG.0000000000002332
Alencar LM, Medeiros FA. The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up. Indian J Ophthalmol 2011;59(Suppl 1):S53–S58. DOI: 10.4103/0301-4738.73694
Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point. Br J Ophthalmol 2012;96(1):47–52. DOI: 10.1136/bjo.2010.196907
Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41(3):741–748.
Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005;123(4):464–470. DOI: 10.1001/archopht.123.4.464
Dada T. Is glaucoma a neurodegeneration caused by central insulin resistance: diabetes type 4? J Curr Glaucoma Pract 2017;11(3):77–79. DOI: 10.5005/jp-journals-10028-1228
Kopp W. Aging and “age-related” diseases—what is the relation? Aging Dis 2024. DOI: 10.14336/AD.2024.0570
Dada T, Mahalingam K, Gupta V. Allostatic load and glaucoma: are we missing the big picture? J Curr Glaucoma Pract 2020;14(2):47–49. DOI: 10.5005/jp-journals-10078-1280
Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev 2013;2:CD006539. DOI: 10.1002/14651858.CD006539.pub3
Mahalingam K, Chaurasia AK, Gowtham L, et al. Therapeutic potential of valproic acid in advanced glaucoma: a pilot study. Indian J Ophthalmol 2018;66(8):1104–1108. DOI: 10.4103/ijo.IJO_108_18
Dada T, Lahri B, Mahalingam K, et al. Beneficial effect of mindfulness based stress reduction on optic disc perfusion in primary open angle glaucoma: a randomized control trial. J Tradit Complement Med 2021;6:581–586. DOI: 10.1016/j.jtcme.2021.06.006
Vasudevan SK, Gupta V, Crowston JG. Neuroprotection in glaucoma. Indian J Ophthalmol 2011;59(Suppl 1):S102–S113. DOI: 10.4103/0301-4738.73700
Gagrani M, Faiq MA, Sidhu T, et al. Meditation enhances brain oxygenation, upregulates BDNF and improves quality of life in patients with primary open angle glaucoma: a randomized controlled trial. Restor Neurol Neurosci 2018;36(6):741–753. DOI: 10.3233/RNN-180857
Dada T, Ramesh P, Shakrawal J. Meditation: a polypill for comprehensive management of glaucoma patients. J Glaucoma 2020;29(2):133–140. DOI: 10.1097/IJG.0000000000001406
Dada T, Gagrani M. Mindfulness meditation can benefit glaucoma patients. J Curr Glaucoma Pract 2019;13(1):1–2. DOI: 10.5005/jp-journals-10078-1239
Coleman-Belin J, Harris A, Chen B, et al. Aging effects on optic nerve neurodegeneration. Int J Mol Sci 2023;24(3):2573. DOI: 10.3390/ijms24032573
Hondur G, Göktaş E, Al-Aswad L, et al. Age-related changes in the peripheral retinal nerve fiber layer thickness. Clin Ophthalmol 2018;12:401–409. DOI: 10.2147/OPTH.S157429
Parikh RS, Parikh SR, Sekhar GC, et al. Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology 2007;114(5):921–926. DOI: 10.1016/j.ophtha.2007.01.023
Celebi ARC, Mirza GE. Age-related change in retinal nerve fiber layer thickness measured with spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54(13):8095–8103. DOI: 10.1167/iovs.13-12634
Jeong D, Sung KR, Jo YH, et al. Age-related physiologic thinning rate of the retinal nerve fiber layer in different levels of myopia. J Ophthalmol 2020;2020:e1873581. DOI: 10.1155/2020/1873581
Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet 2015;6:112. DOI: 10.3389/fgene.2015.00112
Akhtar R, Sherratt MJ, Cruickshank JK, et al. Characterizing the elastic properties of tissues. Mater Today (Kidlington) 2011;14(3):96–105. DOI: 10.1016/S1369-7021(11)70059-1
Pallikaris IG, Kymionis GD, Ginis HS, et al. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci 2005;46(2):409–414. DOI: 10.1167/iovs.04-0162
Liu B, McNally S, Kilpatrick JI, et al. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol 2018;63(1):56–74. DOI: 10.1016/j.survophthal.2017.06.007
Albon J, Purslow PP, Karwatowski WS, et al. Age-related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 2000;84(3):318–323. DOI: 10.1136/bjo.84.3.318
Sigal IA, Yang H, Roberts MD, et al. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models. Invest Ophthalmol Vis Sci 2011;52(3):1896–1907. DOI: 10.1167/iovs.10-5500
Geraghty B, Jones SW, Rama P, et al. Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater 2012;16:181–191. DOI: 10.1016/j.jmbbm.2012.10.011
Steinhart MR, Cone-Kimball E, Nguyen C, et al. Susceptibility to glaucoma damage related to age and connective tissue mutations in mice. Exp Eye Res 2014;119:54–60. DOI: 10.1016/j.exer.2013.12.008
Kamiya K, Shimizu K, Ohmoto F. Effect of aging on corneal biomechanical parameters using the ocular response analyzer. J Refract Surg 2009;25(10):888–893. DOI: 10.3928/1081597X-20090917-10
Dolman CL, McCormick AQ, Drance SM. Aging of the optic nerve. Arch Ophthalmol 1980;98(11):2053–2058. DOI: 10.1001/archopht.1980.01020040905024
Harwerth RS, Wheat JL, Rangaswamy NV. Age-related losses of retinal ganglion cells and axons. Invest Ophthalmol Vis Sci 2008;49(10):4437–4443. DOI: 10.1167/iovs.08-1753
Thomas CN, Berry M, Logan A, et al. Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov 2017;3:17032. DOI: 10.1038/cddiscovery.2017.32
Rao RC, Tchedre KT, Malik MTA, et al. Dynamic patterns of histone lysine methylation in the developing retina. Invest Ophthalmol Vis Sci 2010;51(12):6784–6792. DOI: 10.1167/iovs.09-4730
Pelzel HR, Schlamp CL, Nickells RW. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci 2010;11:62. DOI: 10.1186/1471-2202-11-62
Schmidlin CJ, Dodson MB, Madhavan L, et al. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 2019;134:702–707. DOI: 10.1016/j.freeradbiomed.2019.01.016
Eells JT. Mitochondrial dysfunction in the aging retina. Biology (Basel) 2019;8(2):31. DOI: 10.3390/biology8020031
Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 2009;66(2):121–127. DOI: 10.1203/PDR.0b013e3181a9eafb
Mathur MB, Epel E, Kind S, et al. Perceived stress and telomere length: a systematic review, meta-analysis, and methodologic considerations for advancing the field. Brain Behav Immun 2016;54:158–169. DOI: 10.1016/j.bbi.2016.02.002
Darrow SM, Verhoeven JE, Révész D, et al. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom Med 2016;78(7):776–787. DOI: 10.1097/PSY.0000000000000356
Costanzo A, Ambrosini R, Parolini M, et al. Telomere shortening is associated with corticosterone stress response in adult barn swallows. Curr Zool 2021;68(1):93–101. DOI: 10.1093/cz/zoab020
Steptoe A, Hamer M, Lin J, et al. The longitudinal relationship between cortisol responses to mental stress and leukocyte telomere attrition. J Clin Endocrinol Metab 2017;102(3):962–969. DOI: 10.1210/jc.2016-3035
Jiang Y, Da W, Qiao S, et al. Basal cortisol, cortisol reactivity, and telomere length: a systematic review and meta-analysis. Psychoneuroendocrinology 2019;103:163–172. DOI: 10.1016/j.psyneuen.2019.01.022
Lee RS, Zandi PP, Santos A, et al. Cross-species association between telomere length and glucocorticoid exposure. J Clin Endocrinol Metab 2021;106(12):e5124–e5135. DOI: 10.1210/clinem/dgab519
Yegorov YE, Poznyak AV, Nikiforov NG, et al. The link between chronic stress and accelerated aging. Biomedicines 2020;8(7):198. DOI: 10.3390/biomedicines8070198
Pyo IS, Yun S, Yoon YE, et al. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules 2020;25(20):4649. DOI: 10.3390/molecules25204649
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006;127(6):1109–1122. DOI: 10.1016/j.cell.2006.11.013
Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 2017;18(4):447–476. DOI: 10.1007/s10522-017-9685-9
Wątroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci 2016;61(1):52–62. DOI: 10.1016/j.advms.2015.09.003
Xu D, Hu MJ, Wang YQ, et al. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019;24(6):1123. DOI: 10.3390/molecules24061123
Han X, Xu T, Fang Q, et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 2021;44:102010. DOI: 10.1016/j.redox.2021.102010
Hu Y, Gui Z, Zhou Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med 2019;145:146–160. DOI: 10.1016/j.freeradbiomed.2019.09.024
Chandrashekara KT, Shakarad MN. Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2011;66(9):965–971. DOI: 10.1093/gerona/glr103
Yu X, Li G. Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp Gerontol 2012;47(12):940–949. DOI: 10.1016/j.exger.2012.08.009
Khusbu FY, Zhou X, Roy M, et al. Resveratrol induces depletion of TRAF6 and suppresses prostate cancer cell proliferation and migration. Int J Biochem Cell Biol 2020;118:105644. DOI: 10.1016/j.biocel.2019.105644
Zhao M, Ko S, Garrett IR, et al. The polyphenol resveratrol promotes skeletal growth in mice through a sirtuin 1-bone morphogenic protein 2 longevity axis. Br J Pharmacol 2018;175(21):4183–4192. DOI: 10.1111/bph.14477
Liu M, Yin Y, Ye X, et al. Resveratrol protects against age-associated infertility in mice. Hum Reprod 2013;28(3):707–717. DOI: 10.1093/humrep/des437
Wang N, Luo Z, Jin M, et al. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019;11(10):3117–3137. DOI: 10.18632/aging.101966
Olesen J, Ringholm S, Nielsen MM, et al. Role of PGC-1α in exercise training- and resveratrol-induced prevention of age-associated inflammation. Exp Gerontol 2013;48(11):1274–1284. DOI: 10.1016/j.exger.2013.07.015
Sin TK, Tam BT, Yu AP, et al. Acute treatment of resveratrol alleviates doxorubicin-induced myotoxicity in aged skeletal muscle through SIRT1-dependent mechanisms. J Gerontol A Biol Sci Med Sci 2016;71(6):730–739. DOI: 10.1093/gerona/glv175
Zhou DD, Luo M, Huang SY, et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev 2021;2021:9932218. DOI: 10.1155/2021/9932218
Wang S, Chen B, Yuan M, et al. Enriched oxygen improves age-related cognitive impairment through enhancing autophagy. Front Aging Neurosci 2024;16:1340117. DOI: 10.3389/fnagi.2024.1340117
Gupta M, Rathored J. Hyperbaric oxygen therapy: future prospects in regenerative therapy and anti-aging. Front Aging 2024;5:1368982. DOI: 10.3389/fragi.2024.1368982
Hadanny A, Sasson E, Copel L, et al. Physical enhancement of older adults using hyperbaric oxygen: a randomized controlled trial. BMC Geriatr 2024;24(1):572. DOI: 10.1186/s12877-024-05146-3
Fantini C, Corinaldesi C, Lenzi A, et al. Vitamin D as a shield against aging. Int J Mol Sci 2023;24(5):4546. DOI: 10.3390/ijms24054546
Schürmanns L, Hamann A, Osiewacz HD. Lifespan increase of Podospora anserina by oleic acid is linked to alterations in energy metabolism, membrane trafficking and autophagy. Cells 2022;11(3):519. DOI: 10.3390/cells11030519
Nadeeshani H, Li J, Ying T, et al. Nicotinamide mononucleotide (NMN) as an anti-aging health product—promises and safety concerns. J Adv Res 2021;37:267–278. DOI: 10.1016/j.jare.2021.08.003
Hou Y, Lautrup S, Cordonnier S, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci USA 2018;115(8):E1876–E1885. DOI: 10.1073/pnas.1718819115
de Barcelos IP, Haas RH. CoQ10 and aging. Biology 2019;8(2):28. DOI: 10.3390/biology8020028
Du G, Qiao Y, Zhuo Z, et al. Lipoic acid rejuvenates aged intestinal stem cells by preventing age-associated endosome reduction. EMBO Rep 2020;21(8):e49583. DOI: 10.15252/embr.201949583
de Bengy AF, Decorps J, Martin LS, et al. Alpha-lipoic acid supplementation restores early age-related sensory and endothelial dysfunction in the skin. Biomedicines 2022;10(11):2887. DOI: 10.3390/biomedicines10112887
Tsubota K. Anti-aging approach for ocular disorders: from dry eye to retinitis pigmentosa and myopia. Nippon Ganka Gakkai Zasshi 2017;121(3):232–248.
Schmitt HM, Schlamp CL, Nickells RW. Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells. Neurosci Lett 2016;625:11–15. DOI: 10.1016/j.neulet.2015.12.012
Schmitt HM, Schlamp CL, Nickells RW. Targeting HDAC3 activity with RGFP966 protects against retinal ganglion cell nuclear atrophy and apoptosis after optic nerve injury. J Ocul Pharmacol Ther 2018;34(3):260–273. DOI: 10.1089/jop.2017.0059
Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020;588(7836):124–129. DOI: 10.1038/s41586-020-2975-4
Skoufis EA, Segos J. Contemporaneous concept of anti aging therapy as new valuable paradigm on ocular blood flow enhancement in glaucoma. Adv Ophthalmol Vis Syst 2017;6(3):00181. DOI: 10.15406/aovs.2017.06.00181
Sinclair DA, Mills K, Guarente L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 1997;277(5330):1313–1316. DOI: 10.1126/science.277.5330.1313
Imai S, Kitano H. Heterochromatin islands and their dynamic reorganization: a hypothesis for three distinctive features of cellular aging. Exp Gerontol 1998;33(6):555–570. DOI: 10.1016/s0531-5565(98)00037-0
Oberdoerffer P, Michan S, McVay M, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008;135(5):907–918. DOI: 10.1016/j.cell.2008.10.025
Sinclair DA, LaPlante MD. Lifespan: Why We Age—and Why We Don't Have To. Simon and Schuster; 2019.
Pereira B, Correia FP, Alves IA, et al. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev 2024;95:102204. DOI: 10.1016/j.arr.2024.102204
Goldberg JL, Klassen MP, Hua Y, et al. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 2002;296(5574):1860–1864. DOI: 10.1126/science.1068428
Yun MH. Changes in regenerative capacity through lifespan. Int J Mol Sci 2015;16(10):25392–25432. DOI: 10.3390/ijms161025392
Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain. Science 2017;356(6342):1031–1034. DOI: 10.1126/science.aal5060
Puri D, Wagner W. Epigenetic rejuvenation by partial reprogramming. Bioessays 2023;45(4):e2200208. DOI: 10.1002/bies.202200208
Luo X, Hu Y, Shen J, et al. Integrative analysis of DNA methylation and gene expression reveals key molecular signatures in acute myocardial infarction. Clin Epigenetics 2022;14(1):46. DOI: 10.1186/s13148-022-01267-x
Xiao FH, Wang HT, Kong QP. Dynamic DNA methylation during aging: a “prophet” of age-related outcomes. Front Genet 2019;10:107. DOI: 10.3389/fgene.2019.00107
Kaminskas E, Farrell AT, Wang YC, et al. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005;10(3):176–182. DOI: 10.1634/theoncologist.10-3-176
Dhillon S. Decitabine/cedazuridine: first approval. Drugs 2020;80(13):1373–1378. DOI: 10.1007/s40265-020-01389-7
Lee Y, Shin MH, Kim MK, et al. Increased histone acetylation and decreased expression of specific histone deacetylases in ultraviolet-irradiated and intrinsically aged human skin in vivo. Int J Mol Sci 2021;22(4):2032. DOI: 10.3390/ijms22042032
Al-Mansour F, Alraddadi A, He B, et al. Characterization of the HDAC/PI3K inhibitor CUDC-907 as a novel senolytic. Aging (Albany NY) 2023;15(7):2373–2394. DOI: 10.18632/aging.204616
McIntyre RL, Daniels EG, Molenaars M, et al. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019;11(9):e9854. DOI: 10.15252/emmm.201809854
Gaub P, Tedeschi A, Puttagunta R, et al. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010;17(9):1392–1408. DOI: 10.1038/cdd.2009.216
Lebrun-Julien F, Suter U. Combined HDAC1 and HDAC2 depletion promotes retinal ganglion cell survival after injury through reduction of p53 target gene expression. ASN Neuro 2015;7(3):1759091415593066. DOI: 10.1177/1759091415593066
Wang K, Liu H, Hu Q, et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022;7(1):374. DOI: 10.1038/s41392-022-01211-8
Chen W, Wang C, Yang ZX, et al. Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Commun Biol 2023;6(1):393. DOI: 10.1038/s42003-023-04737-x
Taguchi J, Shibata H, Kabata M, et al. DMRT1-mediated reprogramming drives development of cancer resembling human germ cell tumors with features of totipotency. Nat Commun 2021;12(1):5041. DOI: 10.1038/s41467-021-25249-4
Bhatti GK, Reddy AP, Reddy PH, et al. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer's disease. Front Aging Neurosci 2020;11:369. DOI: 10.3389/fnagi.2019.00369
Goyal M, Singh S, Sibinga EMS, et al. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern Med 2014;174(3):357–368. DOI: 10.1001/jamainternmed.2013.13018
Woodyard C. Exploring the therapeutic effects of yoga and its ability to increase quality of life. Int J Yoga 2011;4(2):49–54. DOI: 10.4103/0973-6131.85485
Dada T, Gwal RS, Mahalingam K, et al. Effect of “365 breathing technique” on intraocular pressure and autonomic functions in patients with glaucoma: a randomized controlled trial. J Glaucoma 2024;33(3):149–154. DOI: 10.1097/IJG.0000000000002356
Dada T, Bhai N, Midha N, et al. Effect of mindfulness meditation on intraocular pressure and trabecular meshwork gene expression: a randomised controlled trial. Am J Ophthalmol 2021;223:308–321. DOI: 10.1016/j.ajo.2020.10.012
Dada T, Mondal S, Midha N, et al. Effect of mindfulness-based stress reduction on intraocular pressure in patients with ocular hypertension: a randomized control trial. Am J Ophthalmol 2022;239:66–73. DOI: 10.1016/j.ajo.2022.01.017
Schutte NS, Malouff JM, Keng SL. Meditation and telomere length: a meta-analysis. Psychol Health 2020;35(8):901–915. DOI: 10.1080/08870446.2019.1707827
Mendioroz M, Puebla-Guedea M, Montero-Marín J, et al. Telomere length correlates with subtelomeric DNA methylation in long-term mindfulness practitioners. Sci Rep 2020;10(1):4564. DOI: 10.1038/s41598-020-61241-6
Tolahunase M, Sagar R, Dada R. Impact of yoga and meditation on cellular aging in apparently healthy individuals: a prospective, open-label single-arm exploratory study. Oxid Med Cell Longev 2017;2017:7928981. DOI: 10.1155/2017/7928981
Dasanayaka NN, Sirisena ND, Samaranayake N. Associations of meditation with telomere dynamics: a case-control study in healthy adults. Front Psychol 2023;14:1222863. DOI: 10.3389/fpsyg.2023.1222863
Jamil A, Gutlapalli SD, Ali M, et al. Meditation and its mental and physical health benefits in 2023. Cureus 2023;15(6):e40650. DOI: 10.7759/cureus.40650
Aghajanyan V, Bhupathy S, Sheikh S, et al. A narrative review of telomere length modulation through diverse yoga and meditation styles: current insights and prospective avenues. Cureus 2023;15(9):e46130. DOI: 10.7759/cureus.46130
Sung MK, Koh E, Kang Y, et al. Three months-longitudinal changes in relative telomere length, blood chemistries, and self-report questionnaires in meditation practitioners compared to novice individuals during midlife. Medicine (Baltimore) 2022;101(41):e30930. DOI: 10.1097/MD.0000000000030930
Nicita-Mauro V, Basile G, Maltese G, et al. Smoking, health and ageing. Immun Ageing 2008;5:10. DOI: 10.1186/1742-4933-5-10
Nicita-Mauro V, Lo Balbo C, Mento A, et al. Smoking, aging and the centenarians. Exp Gerontol 2008;43(2):95–101. DOI: 10.1016/j.exger.2007.06.011
Radmilović G, Matijević V, Mikulić D, et al. The impact of smoking on estimated biological age and body fat composition: a cross-sectional study. Tob Induc Dis 2023;21:161. DOI: 10.18332/tid/174663
White AM, Orosz A, Powell PA, et al. Alcohol and aging—an area of increasing concern. Alcohol 2023;107:19–27. DOI: 10.1016/j.alcohol.2022.07.005
Topiwala A, Taschler B, Ebmeier KP, et al. Alcohol consumption and telomere length: mendelian randomization clarifies alcohol's effects. Mol Psychiatry 2022;27(10):4001–4008. DOI: 10.1038/s41380-022-01690-9
Wang M, Li Y, Lai M, et al. Alcohol consumption and epigenetic age acceleration across human adulthood. Aging (Albany NY) 2023;15(20):10938–10971. DOI: 10.18632/aging.205153
Barbieri E, Agostini D, Polidori E, et al. The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle. Oxid Med Cell Longev 2015;2015:917085. DOI: 10.1155/2015/917085
Cartee GD, Hepple RT, Bamman MM, et al. Exercise promotes healthy aging of skeletal muscle. Cell Metab 2016;23(6):1034–1047. DOI: 10.1016/j.cmet.2016.05.007
Yeung SSY, Kwan M, Woo J. Healthy diet for healthy aging. Nutrients 2021;13(12):4310. DOI: 10.3390/nu13124310
Leitão C, Mignano A, Estrela M, et al. The effect of nutrition on aging—a systematic review focusing on aging-related biomarkers. Nutrients 2022;14(3):554. DOI: 10.3390/nu14030554
Flanagan EW, Most J, Mey JT, et al. Calorie restriction and aging in humans. Annu Rev Nutr 2020;40:105–133. DOI: 10.1146/annurev-nutr-122319-034601
Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007;4(3):e76. DOI: 10.1371/journal.pmed.0040076
Li Y, Tian X, Luo J, et al. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024;22(1):285. DOI: 10.1186/s12964-024-01663-1
Gao X, Huang N, Guo X, et al. Role of sleep quality in the acceleration of biological aging and its potential for preventive interaction on air pollution insults: findings from the UK biobank cohort. Aging Cell 2022;21(5):e13610. DOI: 10.1111/acel.13610
Bocheva G, Bakalov D, Iliev P, et al. The vital role of melatonin and its metabolites in the neuroprotection and retardation of brain aging. Int J Mol Sci 2024;25(10):5122. DOI: 10.3390/ijms25105122
Cortese R. Epigenetics and aging: relevance for sleep medicine. Curr Opin Pulm Med 2024. DOI: 10.1097/MCP.0000000000001109
Donkor N, Gardner JJ, Bradshaw JL, et al. Ocular inflammation and oxidative stress as a result of chronic intermittent hypoxia: a rat model of sleep apnea. Antioxidants (Basel) 2024;13(7):878. DOI: 10.3390/antiox13070878
Meurisse PL, Onen F, Zhao Z, et al. Primary open angle glaucoma and sleep apnea syndrome: a review of the literature. J Fr Ophtalmol 2024;47(2):104042. DOI: 10.1016/j.jfo.2023.104042
Zoh Y, Yun JM. Association between obstructive sleep apnea and glaucoma. Korean J Fam Med 2024. DOI: 10.4082/kjfm.23.0162