Journal of Current Glaucoma Practice

Register      Login

VOLUME 15 , ISSUE 3 ( September-December, 2021 ) > List of Articles

ORIGINAL RESEARCH

Screening for Glaucomatous Visual Field Defects in Rural Australia with an iPad

Mark A Chia, Edward Trang, Ashish Agar, Algis J Vingrys, Jenny Hepschke, George YX Kong, Angus W Turner

Citation Information : Chia MA, Trang E, Agar A, Vingrys AJ, Hepschke J, Kong GY, Turner AW. Screening for Glaucomatous Visual Field Defects in Rural Australia with an iPad. J Curr Glaucoma Pract 2021; 15 (3):125-131.

DOI: 10.5005/jp-journals-10078-1312

License: CC BY-NC 4.0

Published Online: 27-01-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: Developing improved methods for early detection of visual field defects is pivotal to reducing glaucoma-related vision loss. The Melbourne Rapid Fields screening module (MRF-S) is an iPad-based test, which allows suprathreshold screening with zone-based analysis to rapidly assess the risk of manifest glaucoma. The versatility of MRF-S has potential utility in rural areas and during infectious pandemics. This study evaluates the utility of MRF-S for detecting field defects in non-metropolitan settings. Materials and methods: This was a prospective, multicenter, cross-sectional validation study. Two hundred and fifty-two eyes of 142 participants were recruited from rural sites through two outreach eye services in Australia. Participants were tested using MRF-S and compared with a reference standard; either Zeiss Humphrey Field Analyzer or Haag-Streit Octopus performed at the same visit. Standardized questionnaires were used to assess user acceptability. Major outcome measures were the area under the curve (AUC) for detecting mild and moderate field defects defined by the reference tests, along with corresponding performance characteristics (sensitivity, specificity). Results: The mean test duration for MRF-S was 1.88 minutes compared with 5.92 minutes for reference tests. The AUCs for mild and moderate field defects were 0.81 [95% confidence interval (CI): 0.75–0.87] and 0.87 (95% CI: 0.83–0.92), respectively, indicating very good diagnostic accuracy. Using a risk criterion of 55%, MRF-S identified moderate field defects with a sensitivity and specificity of 88.4 and 81.0%, respectively. Conclusion and clinical significance: The MRF-S iPad module can identify patients with mild and moderate field defects while delivering favorable user acceptability and short test duration. This has potential application within rural locations and amidst infectious pandemics.


HTML PDF Share
  1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma. J Am Med Assoc 2014;311(18):1901. DOI: 10.1001/jama.2014.3192.
  2. Weinreb RN, Leung CKS, Crowston JG, et al. Primary open-angle glaucoma. Nat Rev Dis Primers 2016;2(1):16067. DOI: 10.1038/nrdp.2016.67.
  3. Agis Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000;130(4):429–440. DOI: 10.1016/s0002-9394(00)00538-9.
  4. Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120(10):1268–1279. DOI: 10.1001/archopht.120.10.1268.
  5. Ianchulev T, Pham P, Makarov V, et al. Peristat: A computer-based perimetry self-test for cost-effective population screening of glaucoma. Curr Eye Res 2005;30(1):1–6. DOI: 10.1080/02713680490522399.
  6. Quigley HA. Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. Am J Ophthalmol 1998;125(6):819–829. DOI: 10.1016/s0002-9394(98)00046-4.
  7. Bruun-Jensen J. Visual field screening with a laptop computer system. J Am Optom Assoc 2011;82(9):519–527. DOI: 10.1016/j.optm.2010.09.016.
  8. Tsapakis S, Papaconstantinou D, Diagourtas A, et al. Home-based visual field test for glaucoma screening comparison with humphrey perimeter. Clin Ophthalmol 2018;12:2597. DOI: 10.2147/OPTH. S187832.
  9. Wong EY, Keeffe JE, Rait JL, et al. Detection of undiagnosed glaucoma by eye health professionals. Ophthalmology 2004;111(8):1508–1514. DOI: 10.1016/j.ophtha.2004.01.029.
  10. Atalay E, Nongpiur ME, Yap SC, et al. Pattern of visual field loss in primary angle-closure glaucoma across different severity levels. Ophthalmology 2016;123(9):1957–1964. DOI: 10.1016/j.ophtha.2016.05.026.
  11. Prea SM, Kong YXG, Mehta A, et al. Six-month longitudinal comparison of a portable tablet perimeter with the humphrey field analyzer. Am J Ophthalmol 2018;190:9–16. DOI: 10.1016/j.ajo.2018.03.009.
  12. Broadway DC. Visual field testing for glaucoma–a practical guide. Community Eye Health 2012;25(79-80):66.
  13. American Academy of Ophthalmology. Important coronavirus updates for ophthalmologists. Available at http://www.aao.org. Accessed May 2, 2020.
  14. Royal Australian and New Zealand College of Ophthalmologis. Corona Virus (COVID-19) Guidelines. Available at http://www.ranzco.edu. Accessed May 28, 2020.
  15. Carl Zeiss Meditec. Cleaning Guidance for the Humphrey Field Analyzer. Available at http://www.zeiss.com. Accessed May 28, 2020.
  16. Haag-Steit Diagnostics. Cleaning and Disinfection of Octopus Perimeters. Available at http://www.haag-streit.com. Accessed May 28, 2020.
  17. Vingrys AJ, Healey JK, Liew S, et al. Validation of a Tablet as a Tangent Perimeter. Transl Vis Sci Technol. 2016;5(4):3–3. DOI: 10.1167/tvst.5.4.3.
  18. Schulz AM, Graham EC, You Y, et al. Performance of iPad-based threshold perimetry in glaucoma and controls. Clin Experiment Ophthalmol 2018;46(4):346–355. DOI: 10.1111/ceo.13082.
  19. Kong YXG, He M, Crowston JG, et al. A comparison of perimetric results from a tablet perimeter and Humphrey field analyzer in glaucoma patients. Transl Vis Sci Technol 2016;5(6):2–2. DOI: 10.1167/tvst.5.6.2.
  20. Johnson CA, Thapa S, Kong YXG, et al. Performance of an iPad application to detect moderate and advanced visual field loss in Nepal. Am J Ophthalmol 2017;182:147–154. DOI: 10.1016/j.ajo.2017.08.007.
  21. Maeda H, Nakaura M, Negi A. New perimetric threshold test algorithm with dynamic strategy and tendency oriented perimetry (TOP) in glaucomatous eyes. Eye 2000;14(5):747. DOI: 10.1038/eye.2000. 196.
  22. Scherrer M, Fleischhauer J, Helbig H, et al. Comparison of tendency-oriented perimetry and dynamic strategy in Octopus perimetry as a screening tool in a clinical setting: a prospective study. Klin Monbl Augenheilkd 2007;224(04):252–254. DOI: 10.1055/s-2007-962849.
  23. Heijl A, Patella VM, Chong LX, et al. A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study. Am J Ophthalmol 2019;198:154–165. DOI: 10.1016/j.ajo.2018.10.010.
  24. Bujang MA, Adnan TH. Requirements for minimum sample size for sensitivity and specificity analysis. J. Clin Diagn Res 2016;10(10):YE01. DOI: 10.7860/JCDR/2016/18129.8744.
  25. Sponsel WE, Ritch R, Stamper R, et al. Prevent Blindness America visual field screening study. Am J Ophthalmol 1995;120(6):699–708. DOI: 10.1016/s0002-9394(14)72723-0.
  26. Phu J, Khuu SK, Yapp M, et al. The value of visual field testing in the era of advanced imaging: clinical and psychophysical perspectives. Clin Exp Optom 2017;100(4):313–332. DOI: 10.1111/cxo.12551.
  27. Bengtsson B, Heijl A. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Invest Ophthalmol Vis Sci 2000;41(8):2201–2204. DOI: 10.1016/S0002-9394(00)00758-3.
  28. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013;4(2):627.
  29. Foster PJ, Buhrmann R, Quigley HA, et al. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 2002;86(2):238–242. DOI: 10.1136/bjo.86.2.238.
  30. Šimundić A-M. Measures of diagnostic accuracy: basic definitions. EJIFCC 2009;19(4):203.
  31. Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012;24(3):69–71.
  32. Lowry EA, Hou J, Hennein L, et al. Comparison of peristat online perimetry with the Humphrey perimetry in a clinic-based setting. Transl Vis Sci Technol 2016;5(4):4–4. DOI: 10.1167/tvst.5.4.4.
  33. Brusini P, Salvetat ML, Parisi L, et al. Probing glaucoma visual damage by rarebit perimetry. Br J Ophthalmol 2005;89(2):180–184. DOI: 10.1136/bjo.2003.041178.
  34. Willis BH. Spectrum bias—why clinicians need to be cautious when applying diagnostic test studies. Fam Pract 2008;25(5):390–396. DOI: 10.1093/fampra/cmn051.
  35. Robin TA, Müller A, Rait J, et al. Performance of community-based glaucoma screening using Frequency Doubling Technology and Heidelberg Retinal Tomography. Ophthalmic Epidemiol 2005;12(3):167–178. DOI: 10.1080/09286580590969716.
  36. Etikan I, Musa SA, Alkassim RS. Comparison of convenience sampling and purposive sampling. Am J Theoret Appl Statist 2016;5(1):1–4. DOI: 10.11648/j.ajtas.20160501.11.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.