Journal of Current Glaucoma Practice

Register      Login

VOLUME 8 , ISSUE 3 ( September-December, 2014 ) > List of Articles

Original Article

Utility of Ganglion Cell Complex Analysis in Early Diagnosis and Monitoring of Glaucoma using a Different Spectral Domain Optical Coherence Tomography

Purvi R Bhagat, Kalyani Vivek Deshpande, Bhagyashree Natu

Keywords : GCC, OCT, RNFL, Pre-perimetric glaucoma, Peri-metric glaucoma

Citation Information : Bhagat PR, Deshpande KV, Natu B. Utility of Ganglion Cell Complex Analysis in Early Diagnosis and Monitoring of Glaucoma using a Different Spectral Domain Optical Coherence Tomography. J Curr Glaucoma Pract 2014; 8 (3):101-106.

DOI: 10.5005/jp-journals-10008-1171

License: CC BY-NC 4.0

Published Online: 01-06-2019

Copyright Statement:  Copyright © 2014; The Author(s).


Purpose: To determine the importance of ganglion cell complex (GCC) analysis as a parameter for early diagnosis of glaucoma and for following glaucoma progression and to compare glaucoma progression with conventional visual field analysis using a different type of spectral-domain optical coherence tomography (SD-OCT). Materials and methods: Two hundred eyes including 68 normal eyes, 70 eyes with pre-perimetric glaucoma and 62 eyes with perimetric glaucoma were analyzed in this prospective study undertaken during Jan 2013 to Dec 2013 in a tertiary ophthalmology institute. Automated visual field examination was done to group the subjects in above three categories. The thicknesses of the GCC and retinal nerve fiber layer (pRNFL) were measured using Topcon model 2000 version 7.1 SD-OCT images and compared. The statistical analysis was carried out by z-test. Results: The average GCC was thickest in the normal group and the thickness decreased as the severity of glaucoma increased. The mean macular GCC at the start and end of the study in pre-perimetric (94.86 ± 8.31, 90.74 ± 8.46) and perimetric (82.48 ± 13.21, 79.80 ± 12.88) eyes was lower than those in normals (102.70 ± 7.19, 101.82 ± 7.42). Conclusion: Majority of the studies done on GCC analysis have used the Cirrus OCT (Zeiss). Our study has used the Topcon model 2000 version 7.1 to show that irrespective of the machine used, GCC analysis definitely plays an important role. To detect pre-perimetric glaucoma and may show progression earlier than pRNFL in pre-perimetric glaucoma.

PDF Share
  1. Weinreb RN, Khaw PT. Primary open angle glaucoma. Lancet 2004 May;363(9422):1711-1720.
  2. Robert LS, Mark FL, Michael VD. Becker-Shaffer's diagnosis and therapy of the glaucomas. 8th ed. Mosby: Elsevier; 2009. p. 175-178.
  3. George R, Ve RS, Vijaya L. Glaucoma in India: estimated burden of disease. J Glaucoma 2010 Aug;19(6):391-397.
  4. Quigley H, Green W, Addicks E. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982 Jan;100(1):135-146.
  5. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989 May 15;107(5): 453-464.
  6. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA. Optical coherence tomography. Science 1991 Nov;254(5035):1178-1181.
  7. Lee JR, Jeoung JW, Choi J, et al. Structure-function relationships in normal and glaucomatous eyes determined by time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2010 Dec;51(12):6424-6430.
  8. Leung CK, Choi N, Weinreb RN, Liu S, Ye C, Liu L, Lai GW, Lau J, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: 105 pattern of RNFL defects in glaucoma. Ophthalmology 2010 Dec;117(12): 2337-2344.
  9. Kim NR, Lee ES, Seong GJ, Choi EH, Hong S, Kim CY. Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma. Arch Ophthalmol 2010 Sep;128(9): 1121-1128.
  10. Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, Cirineo N, Knipping S, Giaconi J, Caprioli J. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol 2013 Dec;156(6):1297-1307.
  11. Na JH, Lee K, Lee JR, Baek S, Yoo SJ, Kook MS. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fiber defects by spectral-domain optical coherence tomography. Clin Experiment Ophthalmol 2013 Dec; 41(9):870-880.
  12. Jeoung JW, Choi YJ, Park KH, Kim DM. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectraldomain optical coherence tomography. Invest Ophthalmol Vis Sci 2013 Jul1;54(7):4422-4429.
  13. Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence study. Ophthalmology 2005 Mar;112(3):391-400.
  14. Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1993 Feb;34(2):395-400.
  15. Frishman L J, S hen F F, D u L, R obson J G, H arwerth R S, Smith EL 3rd, Carter-Dawson L, Crawford ML. The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 1996 Jun;37(1):125-141.
  16. Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Opthalmol Vis Sci 2005 Jun;46(6):2012-2017.
  17. Tan O, Li G, Lu AT, Varma R, Huang D. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 2008 Jun;115(6):949-956.
  18. Users manual Topcon Model 2000 version 7.1; 3 Oct. p. 1-9.
  19. Sung KR, Wollstein G, Kim NR, Na JH, Nevins JE, Kim CY, Schuman JS. Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 2012 Dec;96(12):1452-1455.
  20. Inuzuka H, Kawase K, Yamada H, Oie S, Kokuzawa S, Yamamoto T. Macular ganglion cell complex thickness in glaucoma with superior or inferior visual hemifield defects. J Glaucoma 2014 Mar;23(3):145-149.
  21. Takagi ST, Kita Y, Yagi F, Tomita G. Macular retinal ganglion cell complex damage in the apparently normal visual field of glaucomatous eyes with hemifield defects. J Glaucoma 2012 Jun-Jul;21(5):318-325.
  22. Na JH, Kook MS, Lee Y, Yu SJ, Choi J. Detection of macular and circumpapillary structural loss in normal hemifield areas of glaucomatous eyes with localized visual field defects using spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2012 Apr;250(4):595-602.
  23. Moreno PA, Konno B, Lima VC, Castro DP, Castro LC, Leite MT, Pacheco MA, Lee JM, Prata TS. Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer. Can J Ophthalmol 2011 Dec;46(6):543-547.
  24. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 2010 Sep;117(9):1692-1699.
  25. Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, Godfrey DG, Carter R, Crandall AS. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 2012 Jun;119(6):1151-1158.
  26. Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol 2010 Dec;150(6):807-814.
  27. Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomography. Ophthalmology 2010 Apr;117(4):738-746.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.