Journal of Current Glaucoma Practice

Register      Login

VOLUME 8 , ISSUE 2 ( May-August, 2014 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of Central Macular Thickness and Retinal Nerve Fiber Layer Thickness using Spectral Domain Optical Coherence Tomography in a Tertiary Care Hospital

Prakashchand Agarwal, VK Saini, Saroj Gupta

Keywords : Spectral Domain OCT, Normative data, Central India

Citation Information : Agarwal P, Saini V, Gupta S. Evaluation of Central Macular Thickness and Retinal Nerve Fiber Layer Thickness using Spectral Domain Optical Coherence Tomography in a Tertiary Care Hospital. J Curr Glaucoma Pract 2014; 8 (2):75-81.

DOI: 10.5005/jp-journals-10008-1165

License: CC BY-NC 4.0

Published Online: 01-06-2019

Copyright Statement:  Copyright © 2014; The Author(s).


Abstract

Purpose: To evaluate the normative data of macular thickness and retinal nerve fiber layer thickness (RNFL) among normal subjects using spectral domain optical coherence tomography (OCT). Materials and methods: Normal subjects presenting to a tertiary medical hospital were included in the study. All patient underwent clinical examination followed by study of macular thickness and RN FL thick ness by spectral domain Topc on OCT. The data was collected and analyzed for variations in gender and age. The data was also compared with available literature. Results: Total numbers of patients enrolled in the study were 154 (308 eyes). Numbers of males were 79 (158 eyes) and numbers of females were 75 (150 eyes). The mean age among males was 42.67 ± 12.15 years and mean age among females was 42.88 ± 11.73 years. Overall the mean mac ular thickness (central 1 mm zone) with SD - OCT was 241.75 ± 17.3 microns. The mean macular volume was 7.6 cu. mm ± 0.33. On analysis of the RNFL thickness, we observed that the RNFL was thickest in the inferior quadrant (138.58) followed by superior (122.30) nasal (116.32) and temporal quadrant (73.04). Gender-wise comparison of the data revealed no statistically significant difference for age, macular thickness parameters, volume and RFNL values except outer temporal thickness among males and females. No age-related difference was noted in the above parameters. On comparison with available norma tive data from India and elsewhere, we found significant variations with different machines. Conclusion: The study is the first to provide normative data using SD-OCT from central India. The data from spectral domain OCT correlated well with the values obtained from similar studies with SD - OCT. Values obtained from time domain OCT machines are different and are not comparable. Coherence Tomography in a Tertiary Care Hospital. J Curr Glaucoma Pract 2014;8(2):75-81.


PDF Share
  1. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995 Feb;102(2):217-229.
  2. Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, Schuman JS, Swanson EA, Fujimoto JG. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998 Feb;105(2):360-370.
  3. Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, Swanson EA. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995 Apr;6(2):89-95.
  4. Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 2004 Jan;137(1):156-169.
  5. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003 Nov;28(21):2067-2069.
  6. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. Highdefinition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2006 Nov;113(11):2054.e1-e14.
  7. Sakamoto A, Hangai M, Yoshimura N. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 2008 Jun;115(6):1071-1078.e7.
  8. Savini G, Carbonelli M, Barboni P. Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 2011 Mar;22(2):115-123.
  9. Adhi M, Aziz S, Muhammad K, Adhi MI. Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography. PLoS One 2012;7(5):e37638.
  10. Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). Am J Ophthalmol 2009 Aug;148(2):266-271.
  11. Hong SW, Ahn MD, Kang SH, Im SK. Analysis of peripapillary retinal nerve fiber distribution in normal young adults. Invest Ophthalmol Vis Sci 2010 Jul;51(7):3515-3523.
  12. Hong S, Kim SM, Park K, Lee JM, Kim CY, Seong GJ. Adjusted color probability codes for peripapillary retinal nerve fiber layer thickness in healthy Koreans. BMC Ophthalmol 2014 Mar;14(1):38.
  13. Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ. Effect of race, age and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol 2012 Mar;130(3):312-318.
  14. Tewari HK, Wagh VB, Sony P, Venkatesh P, Singh R. Macular thickness evaluation using the optical coherence tomography in normal Indian eyes. Indian J Ophthalmol 2004 Sep;52(3):199-204.
  15. Sony P, Sihota R, Tewari HK, Venkatesh P, Singh R. Quantification of the retinal nerve fibre layer thickness in normal Indian eyes with optical coherence tomography. Indian J Ophthalmol 2004 Dec;52(4):303-309.
  16. Ramakrishnan R, Mittal S, Ambatkar S, Kader MA. Retinal nerve fibre layer thickness measurements in normal Indian population by optical coherence tomography. Indian J Ophthalmol 2006 Mar;54(1):11-15.
  17. Appukuttan B, Giridhar A, Gopalakrishnan M, Sivaprasad S. Normative spectral domain optical coherence tomography data on macular and retinal nerve fiber layer thickness in Indians. Indian J Ophthalmol 2014 Mar;62(3):316-321.
  18. Cukras C, Wang YD, Meyerle CB, Forooghian F, Chew EY, Wong WT. Optical coherence tomography-based decision making in exudative age-related macular degeneration: comparison of time- vs spectral-domain devices. Eye (Lond) 2010 May;24(5):775-783.
  19. Pomorska M, Krzy¿anowska-Berkowska P, Misiuk-Hojło M, Zajaç-Pytrus H, Grzybowski A. Application of optical coherence tomography in glaucoma suspect eyes. Clin Exp Optom 2012 Jan;95(1):78-88.
  20. Mwanza JC, Budenz DL, Godfrey DG, Neelakantan A, Sayyad FE, Chang RT, Lee RK. Diagnostic performance of optical coherence tomography ganglion cell--inner plexiform layer thickness measurements in early glaucoma. Ophthalmology 2014 Apr;121(4):849-854.
  21. Kim YJ, Kang MH, Cho HY, Lim HW, Seong M. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma and eyes with early glaucoma. Jpn J Ophthalmol 2014 May;58(3):244-251.
  22. Silva PS, Walia S, Cavallerano JD, Sun JK, Dunn C, Bursell SE, Aiello LM, Aiello LP. Comparison of low-light nonmydriatic digital imaging with 35-mm ETDRS seven-standard field stereo color fundus photographs and clinical examination. Telemed J E Health 2012 Sep;18(7):492-499.
  23. Strom C, Sander B, Larsen N, Larsen M, Lund-Andersen H. Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci 2002 Jan;43(1):241-245.
  24. Yang CS, Cheng CY, Lee FL, Hsu WM, Liu JH. Quantitative assessmentof retinal thickness in diabetic patients with and without clinically significant macular edema using optical coherence tomography. Acta Ophthalmol Scand 2001 Jun;79(3):266-270.
  25. Massin P, Erginay A, Haouchine B, Mehidi AB, Paques M, Gaudric A. Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software. Eur J Ophthalmol 2002 Mar-Apr;12(2):102-108.
  26. Hong S, Kim CY, Lee WS, Seong GJ. Reproducibility of peripapillary retinal nerve fiber layer thickness with spectral domain cirrus high-definition optical coherence tomography in normal eyes. Jpn J Ophthalmol 2010 Jan;54(1):43-47.
  27. Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol 2009 Aug;93(8):1057-1063.
  28. Muscat S, Parks S, Kemp E, Keating D. Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system. Invest Ophthalmol Vis Sci 2002 Feb;43(2):490-495.
  29. Blumenthal EZ, Williams JM, Weinreb RN, Girkin CA, Berry CC, Zangwill LM. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 2000 Dec;107(12):2278-2282.
  30. Konno S, Akiba J, Yoshida A. Retinal thickness measurements with optical coherence tomography and the scanning retinal thickness analyzer. Retina 2001;21(1):57-61.
  31. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG. Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 1995 Aug;113(8):1019-1029.
  32. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, Voskanian S, Velazquez L, Pakter HM, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003 Jan;110(1):177-189.
  33. Neubauer AS, Priglinger S, Ullrich S, Bechmann M, Thiel MJ, Ulbig MW, Kampik A. Comparison of foveal thickness measured with the retinal thickness analyzer and optical coherence tomography. Retina 2001;21(6):596-601.
  34. Massin P, Vicaut E, Haouchine B, Erginay A, Paques M, Gaudric A. Reproducibility of retinal mapping using optical coherence tomography. Arch Ophthalmol 2001 Aug;119(8):1135-1142.
  35. Ibrahim MA, Sepah YJ, Symons RC, Channa R, Hatef E, Khwaja A, Bittencourt M, Heo J, Do DV, Nguyen QD. Spectraland time-domain optical coherence tomography measurements of macular thickness in normal eyes and in eyes with diabetic macular edema. Eye (Lond) 2012 Mar;26(3):454-462.
  36. Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M. Correlation in foveal thickness measurements between spectral-domain and timedomain optical coherence tomography in normal individuals. Eye (Lond) 2010 Feb;24(2):251-258.
  37. Grover S, Murthy RK, Brar VS, Chalam KV. Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography. Invest Ophthalmol Vis Sci 2010 May;51(5):2644-2647.
  38. Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 2003 Apr;135(4):513-520.
  39. Kampougeris G, Spyropoulos D, Mitropoulou A, Zografou A, Kosmides P. Peripapillary retinal nerve fibre layer thickness measurement with SD-OCT in normal and glaucomatous eyes: distribution and correlation with age. Int J Ophthalmol 2013 Oct 18;6(5):662-665.
  40. Tariq YM, Li H, Burlutsky G, Mitchell P. Retinal nerve fiber layer and optic disc measurements by spectral domain OCT: normative values and associations in young adults. Eye (Lond) 2012 Dec;26(12):1563-1570.
  41. Hirasawa H, Tomidokoro A, Araie M, Konno S, Saito H, Iwase A, Shirakashi M, Abe H, Ohkubo S, Sugiyama K, et al. Peripapillary retinal nerve fiber layer thickness determined by spectral-domain optical coherence tomography in ophthalmologically normal eyes. Arch Ophthalmol 2010 Nov; 128(11):1420-1426.
  42. Bendschneider D, Tornow RP, Horn FK, Laemmer R, Roessler CW, Juenemann AG, Kruse FE, Mardin CY. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma 2010 Sep;19(7):475-482.
  43. Huynh SC, Wang XY, Burlutsky G, Rochtchina E, Stapleton F, Mitchell P. Retinal and optic disc findings in adolescence: a population-based OCT study. Invest Ophthalmol Vis Sci 2008 Oct;49(10):4328-4335.
  44. Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol 2010 Dec;150(6):807-814.
  45. Savini G, Barboni P, Carbonelli M, Sbreglia A, Deluigi G, Parisi V. Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography. J Glaucoma 2013 Jun-Jul;22(5):384-389.
  46. Chen HY, Chang YC, Lane HY. Correlation in retinal nerve fiber layer thickness between two OCT units. Optom Vis Sci 2011 Nov;88(11):1326-1332.
  47. Lisboa R, Leite MT, Zangwill LM, Tafreshi A, Weinreb RN, Medeiros FA. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 2012 Nov;119(11):2261-2269.
  48. Johnson DE, El-Defrawy SR, Almeida DR, Campbell RJ. Comparison of retinal nerve fibre layer measurements from time domain and spectral domain optical coherence tomography systems. Can J Ophthalmol 2009 Oct;44(5):562-566.
  49. Lee ES, Kang SY, Choi EH, Kim JH, Kim NR, Seong GJ, Kim CY. Comparisons of nerve fiber layer thickness measurements between Stratus, Cirrus and RTVue OCTs in healthy and glaucomatous eyes. Optom Vis Sci 2011 Jun;88(6):751-758.
  50. Göbel W, Hartmann F, Haigis W. Determination of retinal thickness in relation to the age and axial length using optical coherence tomography. Ophthalmologe 2001 Feb;98(2):157-162. (Ger).
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.