Journal of Current Glaucoma Practice

Register      Login

VOLUME 6 , ISSUE 2 ( May-August, 2012 ) > List of Articles

DIAGNOSTICS

Assessment of Structural Glaucoma Progression

Atsuya Miki

Keywords : Glaucoma progression, Retinal nerve fiber layer imaging, Optical coherence tomography, Confocal scanning laser ophthalmoscopy, Scanning laser polarimetry

Citation Information : Miki A. Assessment of Structural Glaucoma Progression. J Curr Glaucoma Pract 2012; 6 (2):62-67.

DOI: 10.5005/jp-journals-10008-1108

License: CC BY-NC 4.0

Published Online: 01-08-2012

Copyright Statement:  Copyright © 2012; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Purpose: To provide an update on the role of optic nerve head and peripapillary retinal nerve fiber layer imaging in monitoring glaucoma progression. Methods: Review of literature. Results: Imaging technologies, such as optical coherence tomography, scanning laser polarimetry, and confocal scanning laser ophthalmoscopy, objectively and quantitatively measure the structural change associated with glaucoma. Rates of retinal nerve fiber layer (RNFL) and rim area loss are significantly faster in progressing compared with nonprogressing subjects. A number of strategies to detect progression have been proposed. The precision of these methods is generally high. However, there is no agreement as to which instrument or parameter is most appropriate for the evaluation of structural progression associated with glaucoma at this moment. The agreement between structural and functional glaucoma progression is generally poor regardless of the strategies used. Structural progression analyses appear to complement visual field progression analyses, detecting a different subset of progressing subjects. Summary: Imaging devices are promising tools for monitoring patients with glaucoma. Combining structural and functional analyses is useful for accurate monitoring of glaucoma progression. Source of support: Nil Conflict of interest: None declared


PDF Share
  1. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004 May;363(9422):1711-1720.
  2. Nouri-Mahdavi K, Nassiri N, Giangiacomo A, Caprioli J. Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications. Graefes Arch Clin Exp Ophthalmol 2011 Nov;249(11):1593-1616.
  3. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991 Jan;109(1):77-83.
  4. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992 Jan;99(1):19-28.
  5. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002 Jun;120(6):701-713.
  6. Miglior S, Zeyen T, Pfeiffer N, et al. Results of the European glaucoma prevention study. Ophthalmology 2005;112(3): 366- 75.
  7. Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol 2009;127(10):1250-56.
  8. Jampel HD, Friedman D, Quigley HA, et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am J Ophthalmol 2009;147(1):39-44.
  9. Greenfield DS. Optic nerve and retinal nerve fiber layer analyzers in glaucoma. Curr Opin Ophthalmol 2002;13(2): 68-76.
  10. Townsend KA, Wollstein G, Schuman JS. Imaging of the retinal nerve fibre layer for glaucoma. Br J Ophthalmol 2009;93: 139-43.
  11. Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 2011;95(7):909-14.
  12. Huang D, Swanson E, Lin C, et al. Optical coherence tomography. Science 1991;254(5035):1178-81.
  13. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005;123(4):464-70.
  14. Medeiros FA, Zangwill LM, Alencar LM, et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci 2009;50:5741-48.
  15. Lee EJ, Kim TW, Park KH, Seong M, Kim H, Kim DM. Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci 2009;50(2): 662-68.
  16. Leung CKS, Cheung CYL, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: A study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010;51(1):217-22.
  17. Leung CKS, Liu S, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: A prospective analysis with neuroretinal rim and visual field progression. Ophthalmology 2011;118(8):1551-57.
  18. Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Invest Ophthalmol Vis Sci 2011;52(2):1138-44.
  19. Leung CKS, Chiu V, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: A comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology 2011;118(8):1558-62.
  20. Tan O, Chopra V, Lu AT-H, Schuman JS, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 2009;116(12): 2305-14.e1-2. Elsevier Inc.
  21. Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: A comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 2010;149(1):18-31.
  22. Mwanza JC, Oakley JD, Budenz, DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: Automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2011;52(11):8323-29.
  23. Weinreb RN. Evaluating the retinal nerve fiber layer in glaucoma with scanning laser polarimetry. Arch Ophthalmol 1999;117:1403-06.
  24. Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K. Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophthalmol 1990;108:557-60.
  25. Pozzo SD, Marchesan R, Ravalico G. Scanning laser polarimetry— a review. Clin Experiment Ophthalmol 2009;37:68-80.
  26. Medeiros FA, Alencar LM, Zangwill LM, et al. Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 2009;50(4):1675-81.
  27. Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Weinreb RN. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 2008;116(6):1125-33.
  28. Alencar LM, Zangwill LM, Weinreb RN, et al. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci 2010;51:3531-39.
  29. Medeiros FA, Leite MT, Zangwill LM, Weinreb RN. Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. Invest Ophthalmol Vis Sci 2011;52(8):5794-803.
  30. Zangwill LM, Bowd C. Retinal nerve fiber layer analysis in the diagnosis of glaucoma. Curr Opin Ophthalmol 2006;17(2):120- 31.
  31. Mansouri K, Leite MT, Medeiros FA, Leung CKS, Weinreb RN. Assessment of rates of structural change in glaucoma using imaging technologies. Eye 2011;25(3):269-77.
  32. Kamal DS, Viswanathan AC, Hitchings RA, Poinoosawmy D. Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma. Br J Ophthalmol 1999;83:290-94.
  33. Kamal DS, Hitchings RA, Fitzke FW. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Br J Ophthalmol 2000;84(84):993-98.
  34. Chauhan BC, Blanchard JW, Hamilton DC, Leblanc RP. Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 2000;41:775-82.
  35. Chauhan BC, McCormick B, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: Comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2002;119:1492-99.
  36. Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology 2009;116(11):2110-18.
  37. Tan JCH, Hitchings RA. Approach for Identifying Glaucomatous Optic Nerve Progression by Scanning Laser Tomography. Invest Ophthalmol Vis Sci 2003;44(6):2621-26.
  38. Tan JCH, Hitchings RA. Optimizing and validating an approach for identifying glaucomatous change in optic nerve topography. Invest Ophthalmol Vis Sci 2004;45(5):1396-1403.
  39. Patterson AJ, Garway-Heath DF, Strouthidis NG, Crabb DP. A new statistical approach for quantifying change in series of retinal and optic nerve head topography images. Invest Ophthalmol Vis Sci 2005;46(5):1659-67.
  40. Strouthidis NG, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: Detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci 2006;47(7):2904-10.
  41. Fayers T, Strouthidis NG, Garway-Heath DF. Monitoring glaucomatous progression using a novel Heidelberg Retina Tomograph event analysis. Ophthalmology 2007;114(11): 1973-80.
  42. See JLS, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and peripapillary atrophy area change: A comparative study of glaucoma patients and normal controls. Ophthalmology 2009;116(5):840-47.
  43. Medeiros FA, Zangwill LM, Girkin CA, et al. Combining structural and functional measurements to improve estimates of rates of glaucomatous progression. Am J Ophthalmol 2012; In press.
  44. Ransohoff DF, Feinstein AR. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med 1978;299:926-30.
  45. Lijmer JG, Mol BW, Heisterkamp S, et al. Empirical evidence of design-related bias. JAMA 1999;282(11):1061-66.
  46. Medeiros FA, Ng D, Zangwill LM, Sample PA, Bowd C, Weinreb RN. The effects of study design and spectrum bias on the evaluation of diagnostic accuracy of confocal scanning laser ophthalmoscopy in glaucoma. Invest Ophthalmol Vis Sci 2007;48(1):214-22.
  47. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the Hill of Vision: The physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci 2000;41(7):1774-82.
  48. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 2007;26(6):688-710.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.