Aim: To evaluate the efficacy and safety of MicroPulse transscleral laser therapy (MPTLT) for cyclophotocoagulation in the treatment of glaucoma with different doses of energy.
Materials and methods: A retrospective review was done of 136 eyes in 90 patients treated with MPTLT between 2018 and 2022. Intraocular pressures (IOP) at follow-ups were compared with a paired student t-test and treatment outcomes with a Chi-squared test. The cohort was stratified into subgroups to analyze the effect of total applied energy on outcomes. The variance between energy groups was analyzed with the Kruskal–Wallis test adjusted for multiple comparisons.
Results: A total of 136 eyes of 90 patients underwent MPTLT for mostly open angle (36.0%) and childhood glaucoma (30.1%). Applied energy range was between 37.5 and 195.6 J with a mean [standard deviation (SD)] of 100.7 (34.3) J. Applied energy of 125–200 J reduced IOP the most at 2 years with 90% of eyes within 6–21 mm Hg and 66% of eyes having IOP reduced at least 20% (p < 0.001) from baseline. However, at 2 years, energy 50–75 J achieved fewer eyes with two or more Snellen lines lost than energy 125–200 J and a lower proportion of eyes with at least one symptom (p < 0.05). No severe complications of hypotony, phthisis bulbi, or chronic inflammation were reported.
Conclusion: IOP reduction and safety outcome of MPTLT varied with applied energy. Doses should be adjusted to target the treatment goals for individual patients.
Clinical significance: MPTLT was found to be effective in lowering IOP in glaucoma. Using high levels of energy is associated with higher rates of complications.
What is glaucoma? Symptoms, causes, diagnosis, treatment. American Academy of Ophthalmology. 2022. https://www.aao.org/eye-health/diseases/what-is-glaucoma. Accessed on 12 Oct 2023.
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma. JAMA 2014;311(18):1901–1911. DOI: 10.1001/jama.2014.3192
Dastiridou AI, Katsanos A, Denis P, et al. Cyclodestructive procedures in glaucoma: a review of current and emerging options. Adv Ther 2018;35(12):2103–2127. DOI: 10.1007/s12325-018-0837-3
Glaucoma Laser Trial Research Group. The glaucoma laser trial (GLT) and glaucoma laser trial follow-up study: 7. results. Am J Ophthalmol 1995;120(6):718–731. DOI: 10.1016/S0002-9394(14)72725-4
Pantcheva MB, Kahook MY, Schuman JS, et al. Comparison of acute structural and histopathological changes of the porcine ciliary processes after endoscopic cyclophotocoagulation and transscleral cyclophotocoagulation. Clin Exp Ophthalmol 2007;35(3):270–274. DOI: 10.1111/j.1442-9071.2006.01415.x
Fong YYY, Wong BKT, Li FCH, et al. A retrospective study of transcleral cyclophotocoagulation using the slow coagulation technique for the treatment of refractory glaucoma. Semin Ophthalmol 2019;34(5):398–402. DOI: 10.1080/08820538.2019.1638946
Sanchez FG, Peirano-Bonomi JC, Grippo TM. Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters. Med Hypothesis Discov Innov Ophthalmol 2018;7(3):94–100.
Liu GJ, Mizukawa A, Okisaka S. Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd:YAG laser cyclophotocoagulation. Ophthalmic Res 1994;26(2):65–79. DOI: 10.1159/000267395
Maslin JS, Chen PP, Sinard J, et al. Histopathologic changes in cadaver eyes after MicroPulse and continuous wave transscleral cyclophotocoagulation. Can J Ophthalmol 2020;55(4):330–335. DOI: 10.1016/j.jcjo.2020.03.010
Pantcheva MB, Kahook MY, Schuman JS, et al. Comparison of acute structural and histopathological changes in human autopsy eyes after endoscopic cyclophotocoagulation and trans-scleral cyclophotocoagulation. Br J Ophthalmol 2007;91(2):248–252. DOI: 10.1136/bjo.2006.103580
Amoozgar B, Phan EN, Lin SC, et al. Update on ciliary body laser procedures. Curr Opin Ophthalmol 2017;28(2):181–186. DOI: 10.1097/ICU.0000000000000351
Michelessi M, Bicket AK, Lindsley K. Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst Rev 2018;2018(4):CD009313. DOI: 10.1002/14651858.CD009313.pub2
Souissi S, Le Mer Y, Metge F, et al. An update on continuous-wave cyclophotocoagulation (CW-CPC) and micropulse transscleral laser treatment (MP-TLT) for adult and paediatric refractory glaucoma. Acta Ophthalmol 2021;99(5):e621–e653. DOI: 10.1111/aos.14661
Sanchez FG, Peirano-Bonomi JC, Brossard Barbosa N, et al. Update on micropulse transscleral cyclophotocoagulation. J Glaucoma 2020;29(7):598–603. DOI: 10.1097/IJG.0000000000001539
Abdelrahman AM, El Sayed YM. Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma. J Glaucoma 2018;27(10):900–905. DOI: 10.1097/IJG.0000000000001053
Aquino MCD, Barton K, Tan AMW, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol 2015;43(1):40–46. DOI: 10.1111/ceo.12360
Selvam A, Ong J, Kumar RS, et al. Current systems and recent developments of subthreshold laser systems in glaucoma: a narrative review. Ann Eye Sci 2022;7:27–27. DOI: 10.21037/aes-21-69
Frizziero L, Calciati A, Midena G, et al. Subthreshold micropulse laser modulates retinal neuroinflammatory biomarkers in diabetic macular edema. J Clin Med 2021;10(14):3134. DOI: 10.3390/jcm10143134
Scholz P, Altay L, Fauser S. A review of subthreshold micropulse laser for treatment of macular disorders. Adv Ther 2017;34(7):1528–1555. DOI: 10.1007/s12325-017-0559-y
Radcliffe N, Vold S, Kammer JA, et al. Micropulse trans-scleral cyclophotocoagulation (mTSCPC) for the treatment of glaucoma using the micropulse P3 device. Presented at the American Glaucoma Society annual meeting; 2015.
Balendiran V, Landreneau J, An J. Micropulse transscleral laser therapy dosimetry utilizing the revised P3 delivery device: a randomized controlled trial. Ophthalmol Glaucoma 2023;6(3):283–290. DOI: 10.1016/j.ogla.2022.09.004
de Crom RMPC, Slangen CGMM, Kujovic-Aleksov S, et al. Micropulse trans-scleral cyclophotocoagulation in patients with glaucoma: 1- and 2-year treatment outcomes. J Glaucoma 2020;29(9):794–798. DOI: 10.1097/IJG.0000000000001552
Yelenskiy A, Gillette TB, Arosemena A, et al. Patient outcomes following micropulse transscleral cyclophotocoagulation: intermediate-term results. J Glaucoma 2018;27(10):920–925. DOI: 10.1097/IJG.0000000000001023
Fili S, Kontopoulou K, Vastardis I, et al. Transscleral cyclophotocoagulation with MicroPulse® laser versus Ahmed valve implantation in patients with advanced primary open-angle glaucoma. Int Ophthalmol 2021;41(4):1271–1282. DOI: 10.1007/s10792-020-01682-0
Grippo TM, Sanchez FG, Stauffer J, et al. MicroPulse® transscleral laser therapy—fluence may explain variability in clinical outcomes: a literature review and analysis. Clin Ophthalmol 2021;15:2411–2419. DOI: 10.2147/OPTH.S313875
Grippo TM, Töteberg-Harms M, Giovingo M, et al. Evidence-based consensus guidelines series for micropulse transscleral laser therapy—surgical technique, post-operative care, expected outcomes and retreatment/enhancements. Clin Ophthalmol. 2023;17:71–83. DOI: 10.2147/OPTH.S389198
Grippo TM, de Crom RMPC, Giovingo M, et al. Evidence-based consensus guidelines series for micropulse transscleral laser therapy: dosimetry and patient selection. Clin Ophthalmol 2022;16:1837–1846. DOI: 10.2147/OPTH.S365647
Keilani C, Benhatchi N, Bensmail D, et al. Comparative effectiveness and tolerance of subliminal subthreshold transscleral cyclophotocoagulation with a duty factor of 25% versus 31.3% for advanced glaucoma. J Glaucoma 2020;29(2):97–103. DOI: 10.1097/IJG.0000000000001409
Benhatchi N, Bensmail D, Lachkar Y. Benefits of subcyclo laser therapy guided by high-frequency ultrasound biomicroscopy in patients with refractory glaucoma. J Glaucoma 2019;28(6):535–539. DOI: 10.1097/IJG.0000000000001230
Sanchez FG, Lerner F, Sampaolesi J, et al. Efficacy and safety of micropulse® transscleral cyclophotocoagulation in glaucoma. Arch Soc Esp Oftalmol (Engl Ed) 2018;93(12):573–579. DOI: 10.1016/j.oftal.2018.08.003
Zaarour K, Abdelmassih Y, Arej N, et al. Outcomes of micropulse transscleral cyclophotocoagulation in uncontrolled glaucoma patients. J Glaucoma 2019;28(3):270–275. DOI: 10.1097/IJG.0000000000001174
Emanuel ME, Grover DS, Fellman RL, et al. Micropulse cyclophotocoagulation: initial results in refractory glaucoma. J Glaucoma 2017;26(8):726–729. DOI: 10.1097/IJG.0000000000000715
Williams AL, Moster MR, Rahmatnejad K, et al. Clinical efficacy and safety profile of micropulse transscleral cyclophotocoagulation in refractory glaucoma. J Glaucoma 2018;27(5):445–449. DOI: 10.1097/IJG.0000000000000934
Tan AM, Chockalingam M, Aquino MC, et al. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol 2010;38(3):266–272. DOI: 10.1111/j.1442-9071.2010.02238.x
Lee JH, Shi Y, Amoozgar B, et al. Outcome of micropulse laser transscleral cyclophotocoagulation on pediatric versus adult glaucoma patients. J Glaucoma 2017;26(10):936–939. DOI: 10.1097/IJG.0000000000000757
Sarrafpour S, Saleh D, Ayoub S, et al. Micropulse transscleral cyclophotocoagulation: a look at long-term effectiveness and outcomes. Ophthalmol Glaucoma 2019;2(3):167–171. DOI: 10.1016/j.ogla.2019.02.002
Tekeli O, Köse HC. Outcomes of micropulse transscleral cyclophotocoagulation in primary open-angle glaucoma, pseudoexfoliation glaucoma, and secondary glaucoma. Eur J Ophthalmol 2021;31(3):1113–1121. DOI: 10.1177/1120672120914231
Varikuti VNV, Shah P, Rai O, et al. Outcomes of micropulse transscleral cyclophotocoagulation in eyes with good central vision. J Glaucoma 2019;28(10):901–905. DOI: 10.1097/IJG.0000000000001339
Jammal AA, Costa DC, Vasconcellos JPC, et al. Prospective evaluation of micropulse transscleral diode cyclophotocoagulation in refractory glaucoma: 1 year results. Arq Bras Oftalmol 2019;82(5):381–388. DOI: 10.5935/0004-2749.20190076
Al Habash A, AlAhmadi AS. Outcome of MicroPulse® transscleral photocoagulation in different types of glaucoma. Clin Ophthalmol 2019;13:2353–2360. DOI: 10.2147/OPTH.S226554
Magacho L, Lima FE, Ávila MP. Double-session micropulse transscleral laser (CYCLO G6) for the treatment of glaucoma. Lasers Med Sci 2020;35(7):1469–1475. DOI: 10.1007/s10103-019-02922-1
Johnstone M, Wang R, Padilla S, et al. Transcleral laser induces aqueous outflow pathway motion and reorganization. 27th annual meeting of the American Glaucoma Society. 2017.
Kaba Q, Somani S, Tam E, et al. The effectiveness and safety of micropulse cyclophotocoagulation in the treatment of ocular hypertension and glaucoma. Ophthalmol Glaucoma 2020;3(3):181–189. DOI: 10.1016/j.ogla.2020.02.005
Radhakrishnan S, Wan J, Tran B, et al. Micropulse cyclophotocoagulation: a multicenter study of efficacy, safety, and factors associated with increased risk of complications. J Glaucoma 2020;29(12):1126–1131. DOI: 10.1097/IJG.0000000000001644
Souissi S, Baudouin C, Labbé A, et al. Micropulse transscleral cyclophotocoagulation using a standard protocol in patients with refractory glaucoma naive of cyclodestruction. Eur J Ophthalmol 2021;31(1):112–119. DOI: 10.1177/1120672119877586
Preda MA, Karancsi OL, Munteanu M, et al. Clinical outcomes of micropulse transscleral cyclophotocoagulation in refractory glaucoma-18 months follow-up. Lasers Med Sci 2020;35(7):1487–1491. DOI: 10.1007/s10103-019-02934-x
Vernon SA, Koppens JM, Menon GJ, et al. Diode laser cycloablation in adult glaucoma: long-term results of a standard protocol and review of current literature. Clin Exp Ophthalmol 2006;34(5):411–420. DOI: 10.1111/j.1442-9071.2006.01241.x
Rasmuson E, Lindén C, Lundberg B, et al. Efficacy and safety of transscleral cyclophotocoagulation in Swedish glaucoma patients. Acta Ophthalmol 2019;97(8):764–770. DOI: 10.1111/aos.14125Em consene cerunt volo beatum ut ut quassinum que nusam vellesti cum vel etum nos se et audae. Poressercias sunt dolorup tasperate voluptiberum quias excerior aut que verrum nem es elles dion ne