Effect of Sleeping Position on the Retinal Nerve Fiber Layer in Individuals with Glaucoma
Rinalva T Vaz, Afra AL Montenegro, Alexandre DS Quintas Segundo, Gabriela CM Albuquerque, Tarsila VM Alves, Artur L Tenorio, Jerrar Janedson X Silva, Hayana MA Rangel, Rodrigo PC Lira
Citation Information :
Vaz RT, Montenegro AA, Segundo AD, Albuquerque GC, Alves TV, Tenorio AL, Silva JJ, Rangel HM, Lira RP. Effect of Sleeping Position on the Retinal Nerve Fiber Layer in Individuals with Glaucoma. J Curr Glaucoma Pract 2024; 18 (2):57-62.
Aims and background: To evaluate the effect of sleeping in the lateral decubitus position on the average thickness of the retinal nerve fiber layer (RNFL) in the peripapillary region of the optic nerve since the effect of posture on intraocular pressure (IOP) and glaucoma progression is not yet sufficiently understood.
Materials and methods: A cross-sectional observational study was carried out with 40 volunteers who preferably slept in a right lateral decubitus (RLD) (RLD group N = 20) and left lateral decubitus (LLD) (LLD group N = 20) position. IOP was measured in both eyes, first in the sitting position and again after 10 minutes in a supine position, right lateral, and LLD, respectively. The mean thickness of the RNFL and the vertical papillary cup were measured by optical coherence tomography.
Results: The average age of the volunteers was 60.53 ± 7.26 years. There were 32 female and eight male. There was an increase in IOP with the change from the sitting position to the lateral decubitus of 2.7 and 3.6 mm Hg in the RLD group (p < 0.001) and an increase of 3.0 and 3.15 mm Hg in the LLD group (p < 0.001), right eye (RE) vs left eye (LE), respectively. However, there was no difference in IOP values between the groups. The average thickness of the RNFL was in the RLD group—75.10 vs 78.05 μm (p = 0.325) and in the LLD group—81.55 vs 79.95 μm (p = 0.580). Vertical papillary excavation was in the RLD group—0.70 vs 0.65 (p = 0.175) and in the LLD group—0.65 vs 0.65 (p = 1.000), RE vs LE, respectively.
Conclusion: We found no relationship between the lateral decubitus position when adopted preferentially for sleeping and the reduction of the RNFL.
Clinical significance: Search for risk factors for the asymmetrical development of glaucoma, especially in well-controlled IOP in daytime measurements.
Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol 2008;53(Suppl1):3–10. DOI: 10.1016/j.survophthal.2008.08.006
Jonas JB, Aung T, Bourne RR, et al. Glaucoma. Lancet 2017;390(10108):2183–2193. DOI: 10.1016/S0140-6736(17)31469-1
Jammal AA, Berchuck SI, Mariottoni EB, et al. Blood pressure and glaucomatous progression in a large clinical population. Ophthalmology 2022;129(2):161–170. DOI: 10.1016/j.ophtha.2021.08.021
Kiuchi T, Motoyama Y, Oshika T. Relationship of progression of visual field damage to postural changes in intraocular pressure in patients with normal-tension glaucoma. Ophthalmology 2006;113(12):2150–2155. DOI: 10.1016/j.ophtha.2006.06.014
Prata TS, De Moraes CGV, Kanadani FN, et al. Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol 2010;55(5):445–453. DOI: 10.1016/j.survophthal.2009.12.002
Lazzaro EC, Mallick A, Singh M, et al. The effect of positional changes on intraocular pressure during sleep in patients with and without glaucoma. J Glaucoma 2014;23(5):282–287. DOI: 10.1097/01.ijg.0000435848.90957.fe
Enders P, Stern C, Schrittenlocher S, et al. Dependency of intraocular pressure on body posture in glaucoma patients: new approaches to pathogenesis and treatment. Ophthalmologe 2020;117(8):730–739. DOI: 10.1007/s00347-020-01113-6
Lee TE, Yoo C, Kim YY. Effects of different sleeping postures on intraocular pressure and ocular perfusion pressure in healthy young subjects. Ophthalmology 2013;120(8):1565–1570. DOI: 10.1016/j.ophtha.2013.01.011
Liu JHK, Weinreb RN. Monitoring intraocular pressure for 24 h. Br J Ophthalmol 2011;95(5):599–600. DOI: 10.1136/bjo.2010.199737
Aref AA. What happens to glaucoma patients during sleep? Curr Opin Ophthalmol 2013;24(2):162–166. DOI: 10.1097/ICU.0b013e32835c8a73
Lee TE, Yoo C, Lin SC, et al. Effect of different head positions in lateral decubitus posture on intraocular pressure in treated patients with open-angle glaucoma. Am J Ophthalmol 2015;160(5):929–936.e4. DOI: 10.1016/j.ajo.2015.07.030
Kim KN, Jeoung JW, Park KH, et al. Relationship between preferred sleeping position and asymmetric visual field loss in open-angle glaucoma patients. Am J Ophthalmol 2014;157(3):739–745. DOI: 10.1016/j.ajo.2013.12.016
Tang J, Li N, Deng YP, et al. Effect of body position on the pathogenesis of asymmetric primary open angle glaucoma. Int J Ophthalmol 2018;11(1):94–100. DOI: 10.18240/ijo.2018.01.17
Wong MHY, Lai AHO, Singh M, et al. Sleeping posture and intraocular pressure. Singapore Med J 2013;54(3):146–148. DOI: 10.11622/smedj.2013050
Lee JY, Yoo C, Jung JH, et al. The effect of lateral decubitus position on intraocular pressure in healthy young subjects. Acta Ophthalmol 2012;90(1):e68–e72. DOI: 10.1111/j.1755-3768.2011.02208.x
Hecht I, Achiron A, Man V, et al. Modifiable factors in the management of glaucoma: a systematic review of current evidence. Graefe's Arch Clin Exp Ophthalmol 2017;255(4):789–796. DOI: 10.1007/s00417-016-3518-4
Kaplowitz K, Blizzard S, Blizzard DJ, et al. Time spent in lateral sleep position and asymmetry in glaucoma. Investig Ophthalmol Vis Sci 2015;56(6):3869–3874. DOI: 10.1167/iovs.14-16079
Tatham AJ, Medeiros FA. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology 2017;124(12S):S57–S65. DOI: 10.1016/j.ophtha.2017.07.015
Caprioli J, Coleman AL. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 2010;149(5):704–712. DOI: 10.1016/j.ajo.2010.01.018
Flatau A, Solano F, Jefferys JL, et al. A protective eye shield reduces limbal strain and its variability during simulated sleep in adults with glaucoma. J Glaucoma 2018;27(1):77–86. DOI: 10.1097/IJG.0000000000000826
Malihi M, Sit AJ. Effect of head and body position on intraocular pressure. Ophthalmology 2012;119(5):987–991. DOI: 10.1016/j.ophtha.2011.11.024
Kaplowitz K, Dredge J, Honkanen R. Relationship between sleep position and glaucoma progression. Curr Opin Ophthalmol 2019;30(6):484–490. DOI: 10.1097/ICU.0000000000000612
Fang SY, Wan Abdul Halim WH, Mat Baki M, et al. Effect of prolonged supine position on the intraocular pressure in patients with obstructive sleep apnea syndrome. Graefe's Arch Clin Exp Ophthalmol 2018;256(4):783–790. DOI: 10.1007/s00417-018-3919-7
Nelson ES, Myers JG, Lewandowski BE, et al. Acute effects of posture on intraocular pressure. PLoS One 2020;15(2):e0226915. DOI: 10.1371/journal.pone.0226915
Najmanová E, Pluháček F, Haklová M. Intraocular pressure response affected by changing of sitting and supine positions. Acta Ophthalmol 2020;98(3):e368–e372. DOI: 10.1111/aos.14267