Journal of Current Glaucoma Practice

Register      Login

VOLUME 17 , ISSUE 3 ( July-September, 2023 ) > List of Articles


Decision Factors for Glaucoma Suspects and Ocular Hypertensive Treatment at an Academic Center

Elizabeth C Ciociola, Alicia Anderson, Huijun Jiang, Ian Funk, Feng-Chang Lin, Jean-Claude Mwanza, Meredith R Klifto, David Fleischman

Keywords : Cohort study, Ganglion cell–inner plexiform layer, Glaucoma suspect, Retinal nerve fiber layer, Treatment, Visual field

Citation Information : Ciociola EC, Anderson A, Jiang H, Funk I, Lin F, Mwanza J, Klifto MR, Fleischman D. Decision Factors for Glaucoma Suspects and Ocular Hypertensive Treatment at an Academic Center. J Curr Glaucoma Pract 2023; 17 (3):157-165.

DOI: 10.5005/jp-journals-10078-1417

License: CC BY-NC 4.0

Published Online: 11-10-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aims and background: Practice guidelines assert that high-risk glaucoma suspects should be treated. Yet, there is ambiguity regarding what constitutes a high enough risk for treatment. The purpose of this study was to determine which factors contribute to the decision to treat glaucoma suspects and ocular hypertensive patients in an academic ophthalmology practice. Materials and methods: Retrospective cohort study of glaucoma suspects or ocular hypertensives at an academic ophthalmology practice from 2014 to 2020. Demographics, comorbidities, intraocular pressure (IOP), optical coherence tomography (OCT) findings, and visual field measurements were compared between treated and untreated patients. A multivariable logistic regression model assessed predictors of glaucoma suspected treatment. Results: Of the 388 patients included, 311 (80%) were untreated, and 77 (20%) were treated. There was no statistical difference in age, race/ethnicity, family history of glaucoma, central corneal thickness (CCT), or any visual field parameters between the two groups. Treated glaucoma suspects had higher IOP, thinner retinal nerve fiber layers (RNFL), more RNFL asymmetry, thinner ganglion cell–inner plexiform layers (GCIPL), and a higher prevalence of optic disc drusen, disc hemorrhage, ocular trauma, and proliferative diabetic retinopathy (PDR) (p < 0.05 for all). In the multivariable model, elevated IOP {odds ratio [OR] 1.16 [95% confidence interval (CI) 1.04–1.30], p = 0.008}, yellow temporal [5.76 (1.80–18.40), p = 0.003] and superior [3.18 (1.01–10.0), p = 0.05] RNFL quadrants, and a history of optic disc drusen [8.77 (1.96–39.34), p = 0.005] were significant predictors of glaucoma suspect treatment. Conclusion: Higher IOP, RNFL thinning, and optic disc drusen were the strongest factors in the decision to treat a glaucoma suspect or ocular hypertensive patient. RNFL asymmetry, GCIPL thinning, and ocular comorbidities may also factor into treatment decisions. Clinical significance: Understanding the clinical characteristics that prompt glaucoma suspect treatment helps further define glaucoma suspect disease status and inform when treatment should be initiated.

  1. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014;121(11):2081–2090. DOI: 10.1016/j.ophtha.2014.05.013
  2. Casson RJ, Chidlow G, Wood JP, et al. Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol 2012;40(4):341–349. DOI: 10.1111/j.1442-9071.2012.02773.x
  3. Ahmad SS. Glaucoma suspects: a practical approach. Taiwan J Ophthalmol 2018;8(2):74–81. DOI: 10.4103/tjo.tjo_106_17
  4. Gedde SJ, Lind JT, Wright MM, et al. Primary open-angle glaucoma suspect preferred practice pattern®. Ophthalmology 2021;128(1):P151–P192. DOI: 10.1016/j.ophtha.2020.10.023
  5. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6):701–713; discussion 829-30. DOI: 10.1001/archopht.120.6.701
  6. Kass MA, Heuer DK, Higginbotham EJ, et al. Assessment of cumulative incidence and severity of primary open-angle glaucoma among participants in the Ocular Hypertension Treatment Study after 20 years of follow-up. JAMA Ophthalmol 2021;139(5):1–9. DOI: 10.1001/jamaophthalmol.2021.0341
  7. Appropriateness of Treating Glaucoma Suspects RAND Study Group. For which glaucoma suspects is it appropriate to initiate treatment? Ophthalmology 2009;116(4):710–716, 716.e1-82. DOI: 10.1016/j.ophtha.2008.12.065
  8. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6):714–720; discussion 829-30. DOI: 10.1001/archopht.120.6.714
  9. Lee PP, Walt JW, Rosenblatt LC, et al. Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol 2007;144(6):901–907. DOI: 10.1016/j.ajo.2007.07.040
  10. Jiang X, Torres M, Varma R. Variation in intraocular pressure and the risk of developing open-angle glaucoma: the Los Angeles Latino Eye Study. Am J Ophthalmol 2018;188:51–59. DOI: 10.1016/j.ajo.2018.01.013
  11. Matlach J, Bender S, König J, et al. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol 2018;13:9–16. DOI: 10.2147/opth.S186526
  12. Kim JH, Caprioli J. Intraocular pressure fluctuation: is it important? J Ophthalmic Vis Res 2018;13(2):170–174. DOI: 10.4103/jovr.jovr_35_18
  13. Gedde SJ, Vinod K, Wright MM, et al. Primary open-angle glaucoma preferred practice pattern®. Ophthalmology 2021;128(1):P71–P150. DOI: 10.1016/j.ophtha.2020.10.022
  14. Brandt JD, Beiser JA, Kass MA, et al. Central corneal thickness in the Ocular Hypertension Treatment Study (OHTS). Ophthalmology 2001;108(10):1779–1788. DOI: 10.1016/s0161-6420(01)00760-6
  15. Maurice C, Friedman Y, Cohen MJ, et al. Histologic RNFL thickness in glaucomatous versus normal human eyes. J Glaucoma 2016;25(5):447–451. DOI: 10.1097/ijg.0000000000000286
  16. Karvonen E, Stoor K, Luodonpää M, et al. Diagnostic performance of modern imaging instruments in glaucoma screening. Br J Ophthalmol 2020;104(10):1399–1405. DOI: 10.1136/bjophthalmol-2019-314795
  17. Kansal V, Armstrong JJ, Pintwala R, et al. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One 2018;13(1):e0190621. DOI: 10.1371/journal.pone.0190621
  18. Lee KM, Woo SJ, Hwang JM. Factors associated with visual field defects of optic disc drusen. PLoS One 2018;13(4):e0196001. DOI: 10.1371/journal.pone.0196001
  19. Chopra V, Varma R, Francis BA, et al. Type 2 diabetes mellitus and the risk of open-angle glaucoma the Los Angeles Latino Eye Study. Ophthalmology 2008;115(2):227–232.e1. DOI: 10.1016/j.ophtha.2007.04.049
  20. Ambiya V, Kumar A, Bhavaraj VR, et al. Study of inner retinal neurodegeneration in diabetes mellitus using spectral domain optical coherence tomography. Eur J Ophthalmol 2022;32(5):3074–3081. DOI: 10.1177/11206721211048793
  21. Leske MC, Connell AM, Wu SY, et al. Incidence of open-angle glaucoma: the Barbados eye studies. The Barbados eye studies group. Arch Ophthalmol 2001;119(1):89–95.
  22. Le A, Mukesh BN, McCarty CA, et al. Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Invest Ophthalmol Vis Sci 2003;44(9):3783–3789. DOI: 10.1167/iovs.03-0077
  23. Ocular Hypertension Treatment Study Group, European Glaucoma Prevention Study Group, Gordon MO, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007;114(1):10–19. DOI: 10.1016/j.ophtha.2006.08.031
  24. European Glaucoma Prevention Study (EGPS) Group, Miglior S, Pfeiffer N, et al. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 2007;114(1):3–9. DOI: 10.1016/j.ophtha.2006.05.075
  25. Jonas JB, Aung T, Bourne RR, et al. Glaucoma. Lancet 2017;390(10108):2183–2193. DOI: 10.1016/s0140-6736(17)31469-1
  26. Sullivan-Mee M, Amin P, Pensyl D, et al. Differentiating occult branch retinal artery occlusion from primary open-angle glaucoma. Optom Vis Sci 2018;95(2):106–112. DOI: 10.1097/opx.0000000000001170
  27. Ding X, Chang RT, Guo X, et al. Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study. Br J Ophthalmol 2016;100(12):1697–1702. DOI: 10.1136/bjophthalmol-2015-307942
  28. Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes. Invest Ophthalmol Vis Sci 2012;53(11):7194–7200. DOI: 10.1167/iovs.12-9726
  29. Han JC, Lee EJ, Kim SH, et al. Visual field progression pattern associated with optic disc tilt morphology in myopic open-angle glaucoma. Am J Ophthalmol 2016;169:33–45. DOI: 10.1016/j.ajo.2016.06.005
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.