Journal of Current Glaucoma Practice

Register      Login

VOLUME 17 , ISSUE 1 ( January-March, 2023 ) > List of Articles


Rho-kinase Inhibitors in Ocular Diseases: A Translational Research Journey

Kirti Singh, Arshi Singh

Keywords : Antiglaucoma drugs, Corneal regeneration, Diabetic retinopathy, Fixed dose combination, Glaucoma, Magnetic Resonance Imaging and Rectal Cancer European Equivalence trial, Open-angle glaucoma, Rho Kinase Elevated IOP treatment trial, Rho-kinase inhibitors, Systematic review

Citation Information : Singh K, Singh A. Rho-kinase Inhibitors in Ocular Diseases: A Translational Research Journey. J Curr Glaucoma Pract 2023; 17 (1):44-48.

DOI: 10.5005/jp-journals-10078-1396

License: CC BY-NC 4.0

Published Online: 13-05-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: This review summarizes current data on Rho-kinase (ROCK) inhibitors use in ocular diseases, primarily glaucoma. Background: Translational research over the last decade culminating in the development of ROCK inhibitors has provided a much-needed shot in the arm to glaucoma pharmacopeia. ROCK pathway is intricately involved in cytoskeletal modulation with action on cell morphology, cell motility, cell adhesion, cell apoptosis, and smooth muscle contraction. This cytoskeletal modulation property has been utilized to modify trabecular meshwork (TM) resistance, resulting in the discovery of ROCK inhibitors to increase trabecular outflow. Review results: Multicentric trials on ROCK inhibitors for antiglaucoma medications are summarized. The focus is on linking pharmacological action to the clinical utility of these drugs. While the Rho Kinase Elevated intraocular Pressure (IOP) Treatment (ROCKET) trials compared monotherapy with ROCK inhibitor netarsudil vs timolol, MERCURY trials compared a fixed dose combination of latanoprost and ROCK inhibitor netarsudil [fixed combination netarsudil-latanoprost (FCNL)] vs monotherapy with either and bimatoprost-timolol combination. While ROCKET trials showed ROCK inhibitors to be non-inferior to timolol, MERCURY trials showed FCNL achieving a much greater IOP reduction than monotherapy with either. Conjunctival hyperemia was the most common side effect reported with ROCK inhibitor use. Conclusion: Moderate efficacy of ROCK inhibitors with a common side effect of conjunctival hyperemia, makes it an adjunctive antiglaucoma drug of choice and not a first-line therapy Clinical significance: ROCK inhibitors’ action on diseased TM is more physiological compared to available antiglaucoma medications that either reduce aqueous secretion or enhance uveoscleral outflow. The property of ROCK inhibition to stabilize the endothelium of both retinal vasculature and cornea has opened a new chapter in the treatment of diabetic retinopathy and corneal decompensation.

PDF Share
  1. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014;121(11):2081–2090. DOI: 10.1016/j.ophtha.2014.05.013
  2. Inoue K, Setogawa A, Tomita G. Non-responders to prostaglandin analogs among normal-tension glaucoma patients. J Ocul Pharmacol Ther 2016;32(2):90–96. DOI: 10.1089/jop.2015.0086
  3. Sinha S, Lee D, Kolomeyer NN, et al. Fixed combination netarsudil-latanoprost for the treatment of glaucoma and ocular hypertension. Expert Opin Pharmacother 2020;21(1):39–45. DOI: 10.1080/14656566.2019.1685499
  4. Musch DC, Lichter R, Guire KE, et al. The collaborative initial glaucoma treatment study: study designs, methods, and baseline characteristics of enrolled patients. Ophthalmology 1999;106(4):653–662. DOI: 10.1016/s0161-6420(99)90147-1
  5. Tanna AP, Johnson M. Rho kinase inhibitors as novel treatment for glaucoma and ocular hypertension. Ophthalmology 2018;125(11):1741–1756. DOI: 10.1016/j.ophtha.2018.04.040
  6. Moshirfar M, Parker L, Birdsong OC, et al. Use of Rho kinase inhibitors in ophthalmology: a review of the literature. Med Hypothesis Discov Innov Ophthalmol 2018;7(3):101–111. PMID: 30386798; PMCID: PMC6205677.
  7. Wang J, Liu X, Zhong Y. Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol 2013;43(5):1357–1367. DOI: 10.3892/ijo.2013.2100
  8. Loirand G. Rho kinases in health and disease: from basic science to translational research. Pharmacol Rev 2015;67(4):1074–1095. DOI: 10.1124/pr.115.010595
  9. Rao PV, Pattabiraman PP, Kopczynski C. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: bench to bedside research. Exp Eye Res 2017;158:23–32. DOI: 10.1016/j.exer.2016.08.023
  10. Thieme H, Nuskovski M, Nass JU, et al. Mediation of calcium-independent contraction in trabecular meshwork through protein kinase C and rho-A. Invest Ophthalmol Vis Sci 2000;41(13):4240–4246. PMID: 11095621.
  11. Kameda T, Inoue T, Inatani M, et al. The effect of Rho-associated protein kinase inhibitor on monkey schlemm's canal endothelial cells. Invest Ophthalmol Vis Sci 2012;53(6):3092–3103. DOI: 10.1167/iovs.11-8018
  12. Tanihara H, Inoue T, Yamamoto T, et al. One-year clinical evaluation of 0.4% Ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmol 2016;94(1):e26–e34. DOI: 10.1111/aos.12829
  13. Bagga H, Liu JH, Weinreb RN. Intraocular pressure measurements throughout the 24 h. Curr Opin Ophthalmol 2009;20(2):79–83. DOI: 10.1097/ICU.0b013e32831eef4f
  14. Gulati V, Fan S, Zhao M, et al. Diurnal and nocturnal variations in aqueous humor dynamics of patients with ocular hypertension undergoing medical therapy. Arch Ophthalmol 2012;130(6):677–684. DOI: 10.1001/archophthalmol.2011.2573
  15. Tanihara H, Kakuda T, Sano T, et al. Safety and efficacy of ripasudil in japanese patients with glaucoma or ocular hypertension: 3-month Interim Analysis of ROCK-J, a Post-Marketing Surveillance Study. Adv Ther 2019;36(2):333–343. DOI: 10.1007/s12325-018-0863-1
  16. Tanihara H, Inoue T, Yamamoto T, et al. Additive intraocular pressure-lowering effects of the Rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol 2015;133(7):755–761. DOI: 10.1001/jamaophthalmol.2015.0525
  17. Yamagishi-Kimura R, Honjo M, Komizo T, et al. Interaction between pilocarpine and ripasudil on intraocular pressure, pupil diameter, and the aqueous-outflow pathway. Invest Ophthalmol Vis Sci 2018;59(5):1844–1854. DOI: 10.1167/iovs.18-23900
  18. Hoy SM. Netarsudil ophthalmic solution 0.02%: first global approval. Drugs 2018;78(3):389–396. DOI: 10.1007/s40265-018-0877-7
  19. Serle JB, Katz LJ, McLaurin E, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: Rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol 2018;186:116–127. DOI: 10.1016/j.ajo.2017.11.019
  20. Kopczynski CC, Heah T. Netarsudil ophthalmic solution 0.02% for the treatment of patients with open-angle glaucoma or ocular hypertension. Drugs Today (Barc) 2018; 54(8):467–478. DOI: 10.1358/dot.2018.54.8.2849627
  21. Kahook MY, Serle JB, Mah FS, et al. Long-term safety and ocular hypotensive efficacy evaluation of netarsudil ophthalmic solution: Rho kinase elevated IOP treatment trial (ROCKET-2). Am J Ophthalmol 2019;200:130–137. DOI: 10.1016/j.ajo.2019.01.003
  22. Khouri AS, Serle JB, Bacharach J, et al. Once-daily netarsudil versus twice-daily timolol in patients with elevated intraocular pressure: the randomized phase 3 ROCKET-4 Study. Am J Ophthalmol 2019;204:97–104. DOI: 10.1016/j.ajo.2019.03.002
  23. Asrani S, Robin AL, Serle JB, et al. Netarsudil/Latanoprost fixed-dose combination for elevated intraocular pressure: three-month data from a randomized phase 3 trial. Am J Ophthalmol 2019;207:248–257. DOI: 10.1016/j.ajo.2019.06.016
  24. Schehlein EM, Robin AL. Rho-associated kinase inhibitors: evolving strategies in glaucoma treatment. Drugs 2019;79(10):1031–1036. DOI: 10.1007/s40265-019-01130-z
  25. Walters TR, Ahmed IIK, Lewis RA, et al. Once-daily netarsudil/latanoprost fixed- dose combination for elevated intraocular pressure in the randomized phase 3 MERCURY-2 Study. Ophthalmol Glaucoma 2019;2(5):280–289. DOI: 10.1016/j.ogla.2019.03.007
  26. Goldhagen B, Proia AD, Epstein DL, et al. Elevated levels of RhoA in the optic nerve head of human eyes with glaucoma. J Glaucoma 2012;21(8):530–538. DOI: 10.1097/IJG.0b013e318241b83c
  27. Yamamoto K, Maruyama K, Himori N, et al. The novel Rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment glaucoma. Invest Ophthalmol Vis Sci 2014;55(11):7126–7136. DOI: 10.1167/iovs.13-13842
  28. Ohta Y, Takaseki S, Yoshitomi T. Effects of ripasudil hydrochloride hydrate (k-115), a Rho-kinase inhibitor on ocular blood flow and ciliary artery smooth muscle contraction in rabbits. Jpn J Ophthalmol 2017;61(5):423–432. DOI: 10.1007/s10384-017-0524-y
  29. Tanihara H. The effects of Ripasudil (K-115), a Rho kinase inhibitor, on activation of human conjunctival fibroblasts. Exp Eye Res 2016;149:107–115. DOI: 10.1016/j.exer.2016.07.001
  30. Ibrahim DG, Ko JA, Iwata W, et al. An in vitro study of scarring formation mediated by human tenon fibroblasts: effect of Y-27632, a Rho kinase inhibitor. Cell Biochem Funct 2019;37(2):113–124. DOI: 10.1002/cbf.3382
  31. Pitha I, Oglesby E, Chow A, et al. Rho-kinase inhibition reduces myofibroblast differentiation and proliferation of scleral fibroblasts induced by transforming growth factor β and experimental glaucoma. Transl Vis Sci Technol 2018;7(6):6. DOI: 10.1167/tvst.7.6.6
  32. Uchida T, Honjo M, Yamagishi R, et al. The anti-inflammatory effect of Ripasudil (K -115), as Rho-kinase (ROCK) inhibitor on endotoxin induced uveitis in rats. Invest Ophthalmol Vis Sci. 2017;58(12):5584–5593. DOI: 10.1167/iovs.17-22679
  33. Miyagi H, Kim S, Li J, et al. Topical Rho-associated kinase inhibitor, Y27632, accelerates corneal endothelial regeneration in a canine cryoinjury model. Cornea 2019;38(3):352–359. DOI: 10.1097/ICO.0000000000001823
  34. Okumura N, Koizumi M, Ueno Sakamoto Y, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. The Am J Pathol 2012;181(1):268–277. DOI: 10.1016/j.ajpath.2012.03.033
  35. Okumura N, Sakamoto Y, Fujii K, et al. Rho kinase inhibitor enables cell- based therapy for corneal endothelial dysfunction. Sci Rep 2016;18(6):26113. DOI: 10.1038/srep26113
  36. Okumura N, Koizumi N, Kay EP, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci 2013;54(4):2493–2502. DOI: 10.1167/iovs.12-11320
  37. Okumura N, Kinoshita S, Koizumi N. Application of Rho kinase inhibitors for the treatment of corneal endothelial diseases. J Ophthalmol 2017;2017:2646904. DOI: 10.1155/2017/2646904
  38. Zeng P, Pi R, Li P, et al. Fasudil hydrochloride, a potent ROCK Inhibitor, inhibits corneal neovascularization after alkali burns in mice. Mol Vis 2015;21:688–698. PMID: 26120273; PMCID: PMC4463969.
  39. Zhou Q, Duan H, Wang Y, et al. ROCK inhibitor Y-27632 increases the cloning efficiency of limbal stem/progenitor cells by improving their adherence and ROS-scavenging capacity. Tissue Eng Part C Methods 2013;19:531–537. DOI: 10.1089/ten.TEC.2012.0429
  40. Arita R, Hata Y, Ishibashi T. ROCK as a therapeutic target of diabetic retinopathy. J Ophthalmol 2010;2010:175163. DOI: 10.1155/2010/175163
  41. Yamaguchi M, Nakao S, Arita R, et al. Vascular normalization by ROCK inhibitor: therapeutic potential of ripasudil (K-115) eye drop in retinal angiogenesis and hypoxia. Invest Ophthalmol Vis Sci 2016;57(4):2264–2276. DOI: 10.1167/iovs.15-17411
  42. Barouch FC, Miyamoto K, Allport JR, et al. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci 2000;41(5):1153–1158. PMID: 10752954
  43. Arita R, Hata Y, Nakao S, et al. Rho kinase inhibition by fasudil ameliorates diabetes induces microvascular damage. Diabetes 2009;58(1):215–226. DOI: 10.2337/db08-0762
  44. Hata Y, Miura M, Nakao S, et al. Antiangiogenic properties of fasudil, a potent Rho-kinase inhibitor. Jpn J Ophthalmol 2008;52(1):16–23. DOI: 10.1007/s10384-007-0487-5
  45. Minami Y, Song YS, Ishibazawa A, et al. Effect of ripasudil on diabetic macular edema. Sci Rep 2019;9(1):3703. DOI: 10.1038/s41598-019-40194-5
  46. Kita T, Hata Y, Arita R, et al. Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A 2008;105(45):17504–17509. DOI: 10.1073/pnas.0804054105
  47. Zandi S, Nakao S, Chun K, et al. ROCK-Isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Reports 2015;10(7):1173–1186. DOI: 10.1016/j.celrep.2015.01.050
  48. Halász É, Townes-Anderson E. ROCK inhibitors in ocular disease. ADMET & DMPK 2016;4(4):280–330. DOI: 10.5599/admet.4.4.331
  49. Hirata A, Inatani M, Inomata Y, et al. Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia. Graefes Arch Clin Exp Ophthalmol 2008;246(1):51–59. DOI: 10.1007/s00417-007-0666-6
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.