Aim: This study evaluates the safety and efficacy of micropulse transscleral cyclophotocoagulation (MPTSCPC) in glaucoma patients, with standard parameters, over a 24-month period.
Methods: Retrospective analysis of 61 eyes undergoing MPTSCPC from January 2018 to December 2020 was carried out. Patients received 160 seconds of laser, with settings of 2000 mW/cm2 and a duty cycle of 31.3%.
Results: A total of 61 eyes were included, arranged in an age distribution of 73.9 ± 10.8 years. The most frequent diagnosis was primary open-angle glaucoma (POAG), with a mean best-corrected visual acuity (BCVA) of 5/10 in the Snellen Visual chart. Around 37.7% of the eyes had undergone at least one glaucoma filtration surgery prior to MPTSCPC. The mean pretreatment intraocular pressure (IOP) was 24.9 ± 8.6 mm Hg. Except for the contrast at 24 months, at every other follow-up visit, there was a significant reduction (p ≤ 0.001) in IOP and in the number of topical drugs required to control IOP, from four (baseline) to three, with oral acetazolamide suspension in most cases. The total success rate (absolute and clinical successes combined) was 81.9% after 1 year of the treatment. There was no drop in visual acuity or cases of serious complications. There is a positive and significant correlation between prior glaucoma surgery and the need for reinterventions (p = 0.028).
Conclusions: Micropulse transscleral cyclophotocoagulation (MPTSCPC) is an effective and safe procedure for reducing IOP within a broad spectrum of glaucoma patients. Additional studies are needed to confirm the current indications, widen their scope, and determine the optimal treatment settings on an individual basis.
Kuchar S, Moster MR, Reamer CB, et al. Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci 2016;31(2):393–396. DOI: 10.1007/s10103-015-1856-9
Dastiridou AI, Katsanos A, Denis P, et al. Cyclodestructive procedures in glaucoma: a review of current and emerging options. Adv Ther 2018;35(12):2103–2127. DOI: 10.1007/s12325-018-0837-3
Vig N, Ameen S, Bloom P, et al. Micropulse transscleral cyclophotocoagulation: initial results using a reduced energy protocol in refractory glaucoma. Graefes Arch Clin Exp Ophthalmol 2020;258(5):1073–1079. DOI: 10.1007/s00417-020-04611-0
Toyos MM, Toyos R. Clinical outcomes of micropulsed transcleral cyclophotocoagulation in moderate to severe glaucoma. J Clin Exp Ophthalmol 2016;7(6):620. DOI: 10.4172/2155-9570.1000620
Yelenskiy A, Gillette TB, Arosemena A, et al. Patient outcomes following micropulse transscleral cyclophotocoagulation: intermediate-term results. J Glaucoma 2018;27(10):920–925. DOI: 10.1097/IJG.0000000000001023
Lee JH, Shi Y, Amoozgar B, et al. Outcome of micropulse laser transscleral cyclophotocoagulation on pediatric versus adult glaucoma patients. J Glaucoma 2017; 26(10): 936–939. DOI: 10.1097/IJG.0000000000000757
Abdelrahman AM, El Sayed YM. Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma. J Glaucoma 2018;27(10):900–905. DOI: 10.1097/IJG.0000000000001053
Aquino MC, Barton K, Tan AM, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol 2014;43(1): 40–46. DOI: 10.1111/ceo.12360
Ndulue JK, Rahmatnejad K, Sanvicente C, et al. Evolution of cyclophotocoagulation. J Ophthalmic Vis Res 2018;13(1): 55–61. DOI: 10.4103/jovr.jovr_190_17
Sanchez FG, Lerner F, Sampaolesi J, et al. Efficacy and safety of Micropulse® transscleral cyclophotocoagulation in glaucoma. Arch Soc Esp Oftalmol (Engl Ed) 2018;93(12): 573–579. DOI: 10.1016/j.oftal.2018.08.003
Michelessi M, Bicket AK, Lindsley K. Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst Rev 2018;4(4):CD009313. DOI: 10.1002/14651858.CD009313
Dansdill D, Pikey K, Krishna R. Micropulse cyclophotocoagulation outcomes in primary open angle glaucoma. Asian J Res Rep Opthalmol 2021; 4(1): 1–9. https://journalajrrop.com/index.php/AJRROP/article/view/22
Johnstone M. Transcleral laser induces aqueous outfloyw pathway motion & reorganization. In AGS 2017; 2017; Coronado.
Sanchez FG, Peirano-Bonomi JC, Grippo TM. Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters. Med Hypothesis Discov Innov Ophthalmol 2018;7(3): 94–100. PMID: 30386797; PMCID: PMC6205680
Shaarawy TM. Guidelines on design and reporting of glaucoma surgical trials. World Glaucoma Association: Kugler publications; 2008.
Gifi A. Nonlinear multivariate analysis Chichester: John Wiley and Sons; 1990.
van der Kooij AJ, Meulman JJ, Heiser WJ. Local minima in categorical multiple regression. Comput Stat Data Anal 2006;50(2):446–462. DOI: 10.1016/j.csda.2004.08.009
Tan AM, Chockalingam M, Aquino MC, et al. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol 2010;38(3):266–272. DOI: 10.1111/j.1442-9071.2010.02238.x
Lim EJY, Cecilia AM, Lim DKA, et al. Clinical efficacy and safety outcomes of micropulse transscleral diode cyclophotocoagulation in patients with advanced glaucoma. J Glaucoma 2021;30(3):257–265.
de Crom RMPC, Slangen CGMM, Kujovic-Aleksov S, et al. Micropulse trans-scleral cyclophotocoagulation in patients with glaucoma: 1- and 2-year treatment outcomes. J Glaucoma 2020;29(9):794–798. DOI: 10.1097/IJG.0000000000001552
Zaarour K, Abdelmassih Y, Arej N, et al. Outcomes of micropulse transscleral cyclophotocoagulation in uncontrolled glaucoma patients. J Glaucoma 2019;28(3):270–275. DOI: 10.1097/IJG.0000000000001174
Seo D, Lee TJ, Kim JY, et al. Clinical outcomes of micropulse transscleral cyclophotocoagulation in refractory glaucoma. Res Sq 2021. DOI: 10.21203/rs.3.rs-147374/v1
Ariga M, Nivean PD, Madanagopalan VG, et al. Micropulse trans-scleral diode laser cyclophotocoagulation in refractory glaucoma: an initial experience in Indian eyes. Int Ophthalmol 2021:41(8):2639–2645. DOI: 10.1007/s10792-021-01697-1
Gavris MM, Olteanu I, Kantor E, et al. IRIDEX MicroPulse P3: innovative cyclophotocoagulation. Rom J Ophthalmol 2017;61(2): 107–111. DOI: 10.22336/rjo.2017.20
Pelc C. Control IOP without incisions: Iridex Cyclo G6 glaucoma laser system uses micropulse technology for safe treatment and quick recovery. Ophthalmol Manag 2015;19(2015):76–82. https://www.ophthalmologymanagement.com/issues/2015/april-2015/spotlight-on-technology-amp;-technique
Pastor SA, Singh K, Lee DA, et al. Cyclophotocoagulation: a report by the American Academy of Ophthalmology. Ophthalmology 2001;108(11):2130–2138. DOI: 10.1016/s0161-6420(01)00889-2