Journal of Current Glaucoma Practice

Register      Login

VOLUME 16 , ISSUE 2 ( May-August, 2022 ) > List of Articles


Pattern Electroretinogram Parameters and their Associations with Optical Coherence Tomography in Glaucoma Suspects

Andrew Tirsi, Amanda Wong, Daniel Zhu, Guillaume Stoffels, Peter Derr, MD Celso Tello

Keywords : Ganglion cell layer, Glaucoma, Glaucoma suspect, Inner plexiform layer, Macula, Optic nerve, Optical coherence tomography, Retinal ganglion cell, Retinal nerve fiber layer, Steady state pattern electroretinogram

Citation Information : Tirsi A, Wong A, Zhu D, Stoffels G, Derr P, Tello MC. Pattern Electroretinogram Parameters and their Associations with Optical Coherence Tomography in Glaucoma Suspects. J Curr Glaucoma Pract 2022; 16 (2):96-104.

DOI: 10.5005/jp-journals-10078-1365

License: CC BY-NC 4.0

Published Online: 30-08-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: To investigate whether steady state pattern electroretinogram (ssPERG) could identify retinal ganglion cell (RGC) dysfunction, and to assess the relationship between ssPERG with optical coherence tomography (OCT) measurements in glaucoma suspects (GS). Materials and methods: This was a prospective cohort study of GS, identified based on suspicious optic disk appearance and glaucoma risk factors. Complete eye exam, Standard automated perimetry, OCT, and ssPERG were performed. Magnitude (Mag), Magnitude D (MagD), and MagD/Mag ratio were subsequently used in the correlation and linear regression analyses between ssPERG parameters and the RNFL, GCL/IPL, and macular thicknesses measurements. Results: Forty-nine eyes of 26 patients were included. Mag and MagD were significantly correlated with the superior, inferior, and average RNFL thicknesses (avRNFLT). All ssPERG parameters were significantly correlated with the average and minimum GCL/IPL thicknesses and the inner macular sector thicknesses. Mag and MagD significantly predicted the superior, inferior, and avRNFLT in the regression analysis. All ssPERG parameters were predictive of GCL/IPL thickness in all sectors as well as the average and minimum GCL/IPL thicknesses. All ssPERG parameters were predictive of all inner macular sector thicknesses and MagD was also predictive of some outer macular sector thicknesses as well. Conclusion: ssPERG has significant correlations with and is predictive of RNFL, GCL/IPL, and macular thicknesses in glaucoma suspects. Clinical significance: ssPERG may serve as a useful objective functional tool for identifying and following the progression of disease in glaucoma suspects.

PDF Share
  1. Fry LE, Fahy E, Chrysostomou V, et al. The coma in glaucoma: Retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res 2018;65:77–92. DOI: 10.1016/j.preteyeres.2018.04.001
  2. Zivkovic M, Dayanir V, Zlatanovic M, et al. Ganglion cell-inner plexiform layer thickness in different glaucoma stages measured by optical coherence tomography. Ophthalmic Res 2018;59(3):148–154. DOI: 10.1159/000478052
  3. Park K, Kim J, Lee J. Measurement of macular structure-function relationships using spectral domain-optical coherence tomography (SD-OCT) and pattern electroretinograms (PERG). PLoS One 2017;12(5):e0178004. DOI: 10.1371/journal.pone.0178004
  4. Ventura LM, Sorokac N, De Los Santos R, et al. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 2006;47(9):3904–3911. DOI: 10.1167/iovs.06-0161
  5. Tielsch JM, Katz J, Singh K, et al. A Population-based evaluation of glaucoma screening: the Baltimore eye survey. Am J Epidemiol 1991;134(10):1102–1110. DOI: 10.1093/oxfordjournals.aje.a116013
  6. Salgarello T, Giudiceandrea A, Calandriello L, et al. Pattern electroretinogram detects localized glaucoma defects. Transl Vis Sci Technol 2018;7(5):6. DOI: 10.1167/tvst.7.5.6
  7. Tiris A, Gliagias V, Moehringer J, et al. Pattern electroretinogram parameters are associated with optic nerve morphology in preperimeteric glaucoma after adjusting for disc area. J Ophthalmol 2021;2021: 8025337. DOI: 10.1155/2021/8025337
  8. Vajaranant TS, Anderson RJ, Zelkha R, et al. The relationship between macular cell layer thickness and visual function in different stages of glaucoma. Eye (Lond) 2011;25(5):612–618. DOI: 10.1038/eye.2011.17
  9. Chang RT, Singh K. Glaucoma suspect: diagnosis and management. Asia-Pac J Ophthalmol 2016;5(1):32–37. DOI: 10.1097/APO.0000000000000173
  10. Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41(3):741–748.
  11. Gillmann K, Mansouri K, Rao HL, et al. A prospective evaluation of the repeatability and reliability of new steady-state pattern electroretinogram parameters. J Glaucoma 2018;27(12):1079–1085. DOI: 10.1097/IJG.0000000000001103
  12. Porciatti V, Ventura LM. Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 2004;111(1):161–168. DOI: 10.1016/j.ophtha.2003.04.007
  13. Fredette M-J, Anderson DR, Porciatti V, et al. Reproducibility of pattern electroretinogram in glaucoma patients with a range of severity of disease with the new glaucoma paradigm. Ophthalmology 2008;115(6):957–963. DOI: 10.1016/j.ophtha.2007.08.023
  14. Ventura LM, Porciatti V, Ishida K, et al. Pattern electroretinogram abnormality and glaucoma. Ophthalmology 2005;112(1):10–19. DOI: 10.1016/j.ophtha.2004.07.018
  15. O'Donaghue E, Arden GB, O'Sullivan F, et al. The pattern electroretinogram in glaucoma and ocular hypertension. Br J Ophthalmol 1992;76(7):387–394. DOI: 10.1136/bjo.76.7.387
  16. Ambrosio G, Arienzo G, Aurilia P, et al. Pattern electroretinograms in ocular hypertension. Doc Ophthalmol 1988;69(2):161–165. DOI: 10.1007/BF00153697
  17. Luttrull JK. Improved retinal and visual function following pan macular subthreshold diode micropulse laser for retinitis pigmentosa. Eye (Lond) 2018;32(6):1099–1110. DOI: 10.1038/s41433- 018-0017-3
  18. Resende AF, Sanvicente CT, Eshraghi H, et al. Test-retest repeatability of the pattern electroretinogram and flicker electroretinogram. Doc Ophthalmol 2019;139(3):185–195. DOI: 10.1007/s10633-019-09707-5
  19. Mwanza J-C, Oakley JD, Budenz DL, et al. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2011;52(11):8323–8329. DOI: 10.1167/iovs.11-7962
  20. Shengelia A, Tello C, Siegfried J, et al. Diopsys NOVA-ERG system: Reference values of healthy subjects and thresholds for discriminating abnormal visual function from healthy subjects. ARVO 2015 Annual Meeting, Abstract/Poster #1030-B0164.
  21. Porciatti V, Ventura LM. Physiological significance of steady-state pattern electroretinogram losses in glaucoma: clues from simulation of abnormalities in normal subjects. J Glaucoma 2009;18(7):535–542. DOI: 10.1097/IJG.0b013e318193c2e1
  22. Carl Zeiss Meditec, Inc. CIRRUS HD-OCT User Manual. Published 2015. Accessed August 19, 2021.
  23. Lalezary M, Medeiros FA, Weinreb RN, et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol 2006;142(4):576–582. DOI: 10.1016/j.ajo.2006.05.004
  24. Stagg BC, Medeiros FA. A comparison of OCT parameters in identifying glaucoma damage in eyes suspected of having glaucoma. Ophthalmol Glaucoma 2020;3(2):90–96. DOI: 10.1016/j.ogla.2019.11.008
  25. Miki A, Medeiros FA, Weinreb RN, et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology 2014;121(7): 1350–1358. DOI: 10.1016/j.ophtha.2014.01.017
  26. Bayer AU, Maag K-P, Erb C. Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography. Ophthalmology 2002;109(7):1350–1361. DOI: 10.1016/s0161-6420(02)01100-4
  27. Bode SFN, Thomas Jehle, Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci 2011;52(7):4300–4306. DOI: 10.1167/iovs.10-6381
  28. Banitt MR, Ventura LM, Feuer WJ, et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci 2013;54(3):2346–2352. DOI: 10.1167/iovs.12-11026
  29. Kudrna JJ, Ferguson TJ, Swan RJ, et al. Short-term steady-state pattern electroretinography changes using a multi-pressure dial in ocular hypertensive, glaucoma suspect, and mild open-angle glaucoma patients: a randomized, controlled, prospective, pilot study. Ophthalmol Ther 2020;9(4):981–992. DOI: 10.1007/s40123-020-00302-5
  30. Abrol S, Gupta S, Naik M, et al. Can we corroborate peripapillary rnfl analysis with macular gcipl analysis? our 2-year experience at a single-centre tertiary healthcare hospital using two oct machines and a review of literature. Clin Ophthalmol 2020;14:3763–3774. DOI: 10.2147/OPTH.S266112
  31. Leung CKS, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology 2012;119(4):731–737. DOI: 10.1016/j.ophtha.2011.10.010
  32. Choi JA, Park H-YL, Jung K-I, et al. Difference in the Properties of Retinal Nerve Fiber Layer Defect Between Superior and Inferior Visual Field Loss in Glaucoma. Invest Ophthalmol Vis Sci 2013;54(10):6982–6990. DOI: 10.1167/iovs.13-12344
  33. Kim HJ, Lee S-Y, Park KH, et al. Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2016;57(11): 4799–4805. DOI: 10.1167/iovs.16-19214
  34. Soto I, Pease ME, Son JL, et al. Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss. Invest Ophthalmol Vis Sci 2011;52(1):434–441. DOI: 10.1167/iovs.10-5856
  35. Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res 2016;151:96–106. DOI:10.1016/j.exer.2016.08.006
  36. Agostinone J, Di Polo A. Retinal ganglion cell dendrite pathology and synapse loss: implications for glaucoma. Prog Brain Res 2015;220:199–216. DOI: 10.1016/bs.pbr.2015.04.012
  37. Weber AJ, Kaufman PL, Hubbard WC. Morphology of Single Ganglion Cells in the Glaucomatous Primate Retina. Invest Ophthalmol Vis Sci 1998;39(12): 2304–2320.
  38. Greenfield DS. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 2003;121(1):41–46. DOI: 10.1001/archopht.121.1.41
  39. Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998;105(2):224–231. DOI: 10.1016/S0161-6420(98)92743-9
  40. Antwi-Boasiako K, Carter-Dawson L, Harwerth R, et al. The relationship between macula retinal ganglion cell density and visual function in the nonhuman primate. Invest Ophthalmol Vis Sci 2021;62(1):5. DOI: 10.1167/iovs.62.1.5
  41. Zhang C, Tatham AJ, Weinreb RN, et al. Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. Ophthalmology 2014;121(12):2371–2379. DOI: 10.1016/j.ophtha.2014.06.047
  42. Hood DC, Raza AS, de Moraes CGV, et al. Glaucomatous damage of the macula. Prog Retin Eye Res 2013;32:1–21. DOI: 10.1016/j.preteyeres.2012.08.003
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.