Journal of Current Glaucoma Practice

Register      Login

VOLUME 16 , ISSUE 2 ( May-August, 2022 ) > List of Articles

ORIGINAL RESEARCH

Medium-term Outcomes of Micropulse Transscleral Cyclophotocoagulation in Refractory Glaucoma

Inigo Tejada Valle, Sara Pose Bazarra, Miguel Ferreira Taboas, Sara Rubio Cid, Maria Dolores Alvarez Diaz

Keywords : Diode laser, Intraocular pressure, Micropulse transscleral cyclophotocoagulation, Pseudoexfoliation, Refractory glaucoma

Citation Information : Valle IT, Bazarra SP, Taboas MF, Cid SR, Diaz MD. Medium-term Outcomes of Micropulse Transscleral Cyclophotocoagulation in Refractory Glaucoma. J Curr Glaucoma Pract 2022; 16 (2):91-95.

DOI: 10.5005/jp-journals-10078-1370

License: CC BY-NC 4.0

Published Online: 30-08-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim: To describe our first experience with the efficacy of micropulse transscleral cyclophotocoagulation (MP-TSCPC) procedure in the treatment of different glaucoma subtypes refractory to topical medication using a standard protocol. Materials and methods: Retrospective, interventional study in a series of 35 eyes of 34 patients with refractory glaucoma who underwent MP-TSCPC. Treatment success was defined as an intraocular pressure (IOP) reduction of at least 20% compared to baseline with or without IOP-lowering medication or eventual retreatment. Results: Mean age was 78.0 years. The glaucoma subtypes included pseudoexfoliative (PSXG) (16), neovascular (NVG) (9), primary open-angle (POAG) (7), congenital (1), aphakic (1), and secondary glaucoma (1). The mean preoperative IOP was 31.8 ± 10.5 mm Hg and at month 12 was 21.9 ± 10.6 mm Hg (p < 0.05). The average baseline number of glaucoma medications pretreatment was 3.0 ± 1.0 and at month 12 was 2.3 ± 1.2 (p = 0.114). At month 12, success was achieved in 15 eyes (42.9%) with an IOP-lowering effect of 31.1%. PSXG was correlated with IOP reduction (p = 0.037) and had a higher likelihood of success (p = 0.031). As complications, there was one case of prolonged hypotony and another case of developed postoperative neurotrophic keratopathy. Conclusion: Using our standardized protocol, MP-TSCPC seems a safe and relatively effective treatment in the medium-term for refractory glaucoma, achieving good results in PSXG. Clinical significance: There are few studies published about MP-TSCPC. The results of our study contribute to expanding on the short evidence reported at present, emphasizing our considerable percentage of PSGX.


PDF Share
  1. Quigley H, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmology 2006;90(3):262–267. DOI: 10.1136/bjo.2005.081224
  2. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014;121(11):2081–2090. DOI: 10.1016/j.ophtha.2014.05.013
  3. Bloom PA, Tsai JC, Sharma K, et al. “Cyclodiode”. Trans-scleral diode laser cyclophotocoagulation in the treatment of advanced refractory glaucoma. Ophthalmology 1997;104(9):1508–1519. DOI: 10.1016/s0161-6420(97)30109-2
  4. Kosoko O, Gaasterland DE, Pollack IP, et al. Long-term outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group. Ophthalmology 1996;103(8):1294–1302. DOI: 10.1016/s0161-6420(96)30508-3
  5. Aquino MC, Barton K, Tan AM, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol 2015;43(1):40–46. DOI: 10.1111/ceo.12360
  6. Tan AM, Chockalingam M, Aquino MC, et al. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol 2010;38(3):266–272. DOI: 10.1111/j.1442-9071.2010.02238.x
  7. Emanuel ME, Grover DS, Fellman RL, et al. Micropulse cyclophotocoagulation: initial results in refractory glaucoma. J Glaucoma 2017;26(8):726–729. DOI: 10.1097/IJG.0000000000000715
  8. Williams AL, Moster MR, Rahmatnejad K, et al. Clinical efficacy and safety profile of micropulse transscleral cyclophotocoagulation in refractory glaucoma. J Glaucoma 2018;27(5):445–449. DOI: 10.1097/IJG.0000000000000934
  9. Yelenskiy A, Gillette TB, Arosemena A, et al. Patient outcomes following micropulse transscleral cyclophotocoagulation: intermediate-term results. J Glaucoma 2018;27(10):920–925. DOI: 10.1097/IJG.0000000000001023
  10. Sanchez FG, Lerner F, Sampaolesi J, et al. Efficacy and safety of micropulse® transscleral cyclophotocoagulation in glaucoma. Arch Soc Esp Oftalmol (Engl Ed) 2018;93(12):573–579. DOI: 10.1016/j.oftal.2018.08.003
  11. Zaarour K, Abdelmassih Y, Arej N, et al. Outcomes of micropulse transscleral cyclophotocoagulation in uncontrolled glaucoma patients. J Glaucoma 2019;28(3):270–275. DOI: 10.1097/IJG.0000000000001174
  12. Nguyen AT, Maslin J, Noecker RJ. Early results of micropulse transscleral cyclophotocoagulation for the treatment of glaucoma. Eur J Ophthalmol 2020;30(4):700–705. DOI: 10.1177/1120672119839303
  13. Souissi S, Baudouin C, Labbé A, et al. Micropulse transscleral cyclophotocoagulation using a standard protocol in patients with refractory glaucoma naive of cyclodestruction. Eur J Ophthalmol 2021;31(1):112–119. DOI: 10.1177/1120672119877586
  14. Jammal AA, Costa DC, Vasconcellos JPC, et al. Prospective evaluation of micropulse transscleral diode cyclophotocoagulation in refractory glaucoma: 1 year results. Arq Bras Oftalmol 2019;82(5):381–388. DOI: 10.5935/0004-2749.20190076
  15. Tekeli O, Köse HC. Outcomes of micropulse transscleral cyclophotocoagulation in primary open-angle glaucoma, pseudoexfoliation glaucoma, and secondary glaucoma. Eur J Ophthalmol 2021;31(3):1113–1121. DOI: 10.1177/1120672120914231
  16. Sanchez FG, Peirano-Bonomi JC, Grippo TM. Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters. Med Hypothesis Discov Innov Ophthalmol 2018;7(3):94–100.
  17. Shaarawy TM, Sherwood MB, Grehn F. Guidelines on Design and Reporting of Surgical Trials. World Glaucoma Association; 2009. 90 p.
  18. Kaba Q, Somani S, Tam E, et al. The effectiveness and safety of micropulse cyclophotocoagulation in the treatment of ocular hypertension and glaucoma. Ophthalmol Glaucoma 2020;3(3):181–189. DOI: 10.1016/j.ogla.2020.02.005
  19. de Crom RMPC, Slangen CGMM, Kujovic-Aleksov S, et al. Micropulse trans-scleral cyclophotocoagulation in patients with glaucoma: 1- and 2-year treatment outcomes. J Glaucoma 2020;29(9):794–798. DOI: 10.1097/IJG.0000000000001552
  20. Kuchar S, Moster MR, Reamer CB, et al. Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci 2016;31(2):393–396. DOI: 10.1007/s10103-015-1856-9
  21. Gavris MM, Olteanu I, Kantor E, et al. IRIDEX MicroPulse P3: innovative cyclophotocoagulation. Rom J Ophthalmol 2017;61(2):107–111. DOI: 10.22336/rjo.2017.20
  22. Radhakrishnan S, Wan J, Tran B, et al. Micropulse cyclophotocoagulation: a multicenter study of efficacy, safety, and factors associated with increased risk of complications. J Glaucoma 2020;29(12):1126–1131. DOI: 10.1097/IJG.0000000000001644
  23. Sarrafpour S, Saleh D, Ayoub S, et al. Micropulse transscleral cyclophotocoagulation: a look at long-term effectiveness and outcomes. Ophthalmol Glaucoma 2019;2(3):167–171. DOI: 10.1016/j.ogla.2019.02.002
  24. Preda MA, Karancsi OL, Munteanu M, et al. Clinical outcomes of micropulse transscleral cyclophotocoagulation in refractory glaucoma-18 months follow-up. Lasers Med Sci 2020;35(7):1487–1491. DOI: 10.1007/s10103-019-02934-x
  25. Sanchez FG, Peirano-Bonomi JC, Brossard BN, et al. Update on micropulse transscleral cyclophotocoagulation. J Glaucoma 2020;29(7):598–603. DOI: 10.1097/IJG.0000000000001539
  26. Perez CI, Han Y, Rose-Nussbaumer J, et al. Neurotrophic keratitis after micropulse transscleral diode laser cyclophotocoagulation. Am J Ophthalmol Case Rep 2019;15:100469. DOI: 10.1016/j.ajoc.2019.100469
  27. Fernández VGÁ, Barraquer CRI, Cárcamo MAL, et al. Neurotrophic keratitis after transscleral diode laser cyclophotocoagulation. Arch Soc Esp Oftalmol 2016;91(7):320–326. DOI: 10.1016/j.oftal.2015.12.001
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.