The “Topography” of Glaucomatous Defect Using OCT and Visual Field Examination
Alessandro de Paula, Andrea Perdicchi, Augusto Pocobelli, Serena Fragiotta, Gianluca Scuderi
Keywords :
Glaucoma, OCT, RNFL, Visual field
Citation Information :
de Paula A, Perdicchi A, Pocobelli A, Fragiotta S, Scuderi G. The “Topography” of Glaucomatous Defect Using OCT and Visual Field Examination. J Curr Glaucoma Pract 2022; 16 (1):31-35.
Aim: To describe the modifications in the superior and inferior retinal nerve fiber layer (RNFL) thickness regarding the distribution of the VF defects for the horizontal meridians in glaucomatous patients and the differences in the RNFL thickness topography between glaucomatous and healthy subjects.
Methods: One hundred twenty eyes of 91 patients affected by glaucoma and 94 eyes of 51 normal patients were retrospectively reviewed. Computerized 30°VF (Octopus G1 Dynamic strategy) and optical coherence tomography (OCT) ONH and 3D disk analysis were performed in all cases. The RNFL thickness measures analyzed in both groups were superior-nasal (SN), superior-temporal (ST), inferior-nasal (IN), and inferior temporal (IT) sectors. The VFs were classified according to the distribution of the VF defect as for the horizontal meridian in the pattern deviation plot as superior, inferior, predominantly superior, or predominantly inferior.
Result: In the glaucomatous group, 78 eyes (65%) showed a predominantly superior VF defect, while 38 eyes (32%) showed a predominantly inferior VF defect. Fifty-six eyes (46.7%) presented an exclusively superior, and 27/120 eyes (22.5%) presented an exclusively inferior VF defect. In the control group, the thickest RNFL sector was IT. The ST sector showed the thickest RNFL in presence of an exclusive superior VF defect. In case of an exclusive inferior VF defect, the thickest RNFL was the IT sector. VF showing superior defect presented a more altered MD than the VF with an inferior defect.
Conclusion: Glaucomatous damage affects both the superior and inferior neural rim almost simultaneously. However, the neural rim loss seems to be asymmetric, involving the inferior or superior rim depending on the predominant involvement of the superior or inferior hemifield at the VF test. Particularly, the IT sector appears to be the most compromised in glaucomatous eyes. Therefore, the asymmetry between superior and inferior RNFL could support the diagnosis of glaucoma.
Scuderi G, Khaw PT, Medeiros FA, et al. Challenging laucomas: update on diagnosis and management. J Ophthalmol 2016:6935086. DOI: 10.1155/2016/6935086
Shon K, Wollstein G, Schuman JS, et al. Prediction of glaucomatous visual field progression: pointwise analysis. Curr Eye Res 2014;39(7):705–710. DOI: 10.3109/02713683.2013.867353
Scuderi GL, Cesareo M, Perdicchi A, et al. Standard automated perimetry and algorithms for monitoring glaucoma progression. Prog Brain Res 2008;173:77–99. DOI: 10.1016/s0079-6123(08)01107-2
Perdicchi A, Abdolrahimzadeh S, Cutini A, et al. Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma. Clin Ophthalmol 2016;25(10):1647–1651. DOI: 10.2147/OPTH.S113995
Shin HY, Park HY, Jung KI, et al. Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis. Invest Ophthalmol Vis Sci 2013;54(12):7344–7353. DOI: 10.1167/iovs.13-12667
Leung CK, Chan WM, Chong KK, et al. Comparative study of retinal nerve fiber layer measurement by stratusOCT and GDx VCC, I: correlation analysis in glaucoma. Invest Ophthalmol Vis Sci 2005;46(9):3214–3220. DOI: 10.1167/iovs.05-0294
Scuderi G, Fragiotta S, Scuderi L, et al. Ganglion cell complex analysis in glaucoma patients: what can it tell us? Eye Brain 2020;12:33–44. DOI: 10.2147/EB.S226319
Perdicchi A, de Paula A, Sordi E, et al. Cluster analysis of computerized visual field and optical coherence tomography-ganglion cell complex defects in high intraocular pressure patients or early-stage glaucoma. Eur J Ophthalmol 2020;30(3):475-479. DOI: 10.1177/1120672119841774
Gordon MO, Beiser JA, Brandt JD, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6):714–720. DOI: 10.1001/archopht.120.6.714
The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000;130(4):429–440. DOI: 10.1016/s0002-9394(00)00538-9
Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 2003;121(1):48-56. DOI: 10.1001/archopht.121.1.48
Kass MA, Heuer DK, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6):701–713. DOI: 10.1001/archopht.120.6.701
Miglior S, Zeyen T, Pfeiffer N, et al. European glaucoma prevention study: author reply. Ophthalmology 2005;112(3):366–375. DOI: 10.1016/j.ophtha.2004.11.030.
Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 2020;127(4S):S45–S69. DOI: 10.1016/j.ophtha.2020.01.035
Heijl A, Lundqvist L. The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta Ophthalmol (Copenh) 1984;62(4):658–664. DOI: 10.1111/j.1755-3768.1984.tb03979.x
Hart WM, Becker B. The onset and evolution of glaucomatous visual field defects. Ophthalmology 1982;89(3):268–279. DOI: 10.1016/s0161-6420(82)34798-3
Drance SM. The glaucomatous visual field. Br J Ophthalmol 1972;56(3):186-200. DOI: 10.1136/bjo.56.3.186.
Lan YW, Henson DB, Kwartz AJ. The correlation between optic nerve head topographic measurements, peripapillary nerve fibre layer thickness, and visual field indices in glaucoma. Br J Ophthalmol 2003;87(9):1135–1141. DOI: 10.1136/bjo.87.9.1135
Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology 2012;119(9):1858–1866. DOI: 10.1016/j.ophtha.2012.03.044
Jonas JB, Fernandez MC, Sturmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 1993;100(1):63–68. DOI: 10.1016/s0161-6420(13)31694-7
Paula A, Perdicchi A, Tizio FD, et al. Effect of intraocular pressure lowering on the capillary density of optic nerve head and retinal nerve fiber layer in patients with glaucoma. Eur J Ophthalmol 2021;31(6):3003-3009. DOI: 10.1177/1120672120967233
Leung CK, Choi N, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology 2010;117(12):2337–2344. DOI: 10.1016/j.ophtha.2010.04.002
Sanchez-Pulgarin M, Saenz-Frances F, Martinez-de-la-Casa JM, et al. Structure-function relationship in a series of glaucoma cases. J Fr Ophtalmol 2020;43(2):111–122.
Cho HK, Kee C. Comparison of the progression rates of the superior, inferior, and both hemifield defects in normal-tension glaucoma patients. Am J Ophthalmol 2012;154(6):958–968.e1. DOI: 10.1016/j.ajo.2012.05.025
Choi JA, Shin HY, Park HL, et al. The pattern of retinal nerve fiber layer and macular ganglion cell-inner plexiform layer thickness changes in glaucoma. J Ophthalmol 2017;2017:6078365. DOI: 10.1155/2017/6078365
Johnson CA, Adams AJ, Casson EJ, et al. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 1993;111(5):645–650. DOI: 10.1001/archopht.1993.01090050079034
Bartz-Schmidt KU, Thumann G, Jonescu-Cuypers CP, et al. Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol 1999;44 Suppl 1: S41–53. DOI: 10.1016/s0039-6257(99)00076-4