Journal of Current Glaucoma Practice

Register      Login

VOLUME 15 , ISSUE 3 ( September-December, 2021 ) > List of Articles


In Vitro Toxicity Evaluation of New Generic Latanost® and Latacom® as an Ophthalmic Formulation

Jessica Sze Chia Ng, Yi Xin Tan, Nor Amalina Ahmad Alwi, Kar Ming Yee, Ahmad Hazri Abdul Rashid, Ka-Liong Tan, Chuei Wuei Leong

Keywords : Eye irritation, Generic, Glaucoma, Latanoprost, Timolol

Citation Information : Ng JS, Tan YX, Alwi NA, Yee KM, Rashid AH, Tan K, Leong CW. In Vitro Toxicity Evaluation of New Generic Latanost® and Latacom® as an Ophthalmic Formulation. J Curr Glaucoma Pract 2021; 15 (3):139-143.

DOI: 10.5005/jp-journals-10078-1319

License: CC BY-NC 4.0

Published Online: 27-01-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Aim and objective: To evaluate the safety of two new generic ophthalmic formulations, Latanost® (latanoprost) and Latacom® (latanoprost and timolol) by utilizing the three-dimensional reconstructed human cornea-like epithelium (RhCE) tissue constructs as an in vitro model in the assessment of ocular irritation. Materials and methods: In vitro irritation test was conducted on Latanost® (LTN) and Latacom® (LTC) and their corresponding innovators, Xalatan® (XLT) and Xalacom® (XLC), respectively, by using RhCE. According to the OECD guidelines No. 492 on the testing of chemicals, the ophthalmic formulations were assessed via topical exposure of the formulations on in vitro RhCE tissue. Cell viability was measured by MTT assay. Results: The mean cell viability percentage of LTN and XLT was 70.5 and 75.7%, respectively, whereas, for LTC and XLC, the percentage viability was 95.3 and 85.7%, respectively. The two new generic formulations (LTN and LTC) did not reduce the cell viability of the RhCE tissue to ≤60%. Thus, both can be considered as nonirritant. Conclusion: Both newly developed generics are nonocular irritants. Clinical significance: This study informs the safety assessment of new generic antiglaucoma ophthalmic solutions applicable for long-term glaucoma treatment. The formulations aim to keep eye irritation to a minimum level.

  1. Tsai JH, Derby E, Holland EJ, et al. Incidence and prevalence of glaucoma in severe ocular surface disease. Cornea. 2006;25(5):530–532. DOI: 10.1097/01.ico.0000220776.93852.d9.
  2. Khanna RC. Ocular surface disorders. Community Eye Health 2017;30(99):S1–S2.
  3. Labbe A, Terry O, Brasnu E, et al. Tear film osmolarity in patients treated for glaucoma or ocular hypertension. Cornea. 2012;31(9):994–999. DOI: 10.1097/ICO.0b013e31823f8cb6.
  4. Servat JJ, Bernardino CR. Effects of common topical antiglaucoma medications on the ocular surface, eyelids and periorbital tissue. Drugs Aging 2011;28(4):267–282. DOI: 10.2165/11588830-000000000-00000.
  5. Baudouin C, Renard JP, Nordmann JP, et al. Prevalence and risk factors for ocular surface disease among patients treated over the long term for glaucoma or ocular hypertension. Eur J Ophthalmol 2012. 0. DOI: 10.5301/ejo.5000181.
  6. Schwenn O, Heckmann B, Guzy C, et al. Long-term effect of latanoprost/timolol fixed combination in patients with glaucoma or ocular hypertension: a prospective, observational, noninterventional study. BMC Ophthalmol 2010;10(1):21. DOI: 10.1186/1471-2415-10-21.
  7. Cox JA, Mollan SP, Bankart J, et al. Efficacy of antiglaucoma fixed combination therapy versus unfixed components in reducing intraocular pressure: a systematic review. Br J Ophthalmol 2008;92(6):729–734. DOI: 10.1136/bjo.2008.139329.
  8. Hollo G. The side effects of the prostaglandin analogues. Expert Opin Drug Saf 2007;6(1):45–52. DOI: 10.1517/14740338.6.1.45.
  9. Uematsu M, Mohamed YH, Onizuka N, et al. Acute corneal toxicity of latanoprost with different preservatives. Cutan Ocul Toxicol 2016;35(2):120–125. DOI: 10.3109/15569527.2015.1058272.
  10. Takada Y, Okada Y, Fujita N, et al. A patient with corneal epithelial disorder that developed after administration of a latanoprost generic, but not a brand-name drug, eye drop. Case Rep Ophthalmol Med 2012;2012:536746. DOI: 10.1155/2012/536746.
  11. Lotz C, Schmid FF, Rossi A, et al. Alternative methods for the replacement of eye irritation testing. ALTEX. 2016;33(1):55–67. DOI: 10.14573/altex.1508241.
  12. Test No. 492: Reconstructed human Cornea-like Epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage, (2019).
  13. United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS), (2015).
  14. Kaluzhny Y, Kandarova H, d'Argembeau-Thornton L, et al. Eye irritation test (EIT) for hazard identification of eye irritating chemicals using reconstructed human cornea-like epithelial (RhCE) tissue model. J Vis Exp 2015(102):e52979. DOI: 10.3791/52979.
  15. Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993;303(2):474–482. DOI: 10.1006/abbi.1993.1311.
  16. Vellonen KS, Hellinen L, Mannermaa E, et al. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev 2018;126:3–22. DOI: 10.1016/j.addr.2017.12.009.
  17. Kaluzhny Y, Kinuthia MW, Truong T, et al. New human organotypic corneal tissue model for ophthalmic drug delivery studies. Invest Ophthalmol Vis Sci 2018;59(7):2880–2898. DOI: 10.1167/iovs.18- 23944.
  18. Nagai N, Murao T, Oe K, et al. In vitro evaluation for corneal damages by anti-glaucoma combination eye drops using human corneal epithelial cell (HCE-T). Yakugaku Zasshi 2011;131(6):985–991. DOI: 10.1248/yakushi.131.985.
  19. Lockington D, Macdonald EC, Stewart P, et al. Free radicals and the pH of topical glaucoma medications: a lifetime of ocular chemical injury? Eye (Lond) 2012;26(5):734–741. DOI: 10.1038/eye. 2012.25.
  20. Norn M. Tear pH after instillation of buffer in vivo. Acta Ophthalmol Suppl 1985;173(S173):32–34. DOI: 10.1111/j.1755-3768.1985. tb06834.x.
  21. Baranowski P, Karolewicz B, Gajda M, et al. Ophthalmic drug dosage forms: characterisation and research methods. Scient World J. 2014;2014:861904. DOI: 10.1155/2014/861904.
  22. Dutescu RM, Panfil C, Schrage N. Osmolarity of prevalent eye drops, side effects, and therapeutic approaches. Cornea. 2015;34(5):560–566. DOI: 10.1097/ICO.0000000000000368.
  23. Li M, Du C, Zhu D, et al. Daytime variations of tear osmolarity and tear meniscus volume. Eye Contact Lens 2012;38(5):282–287. DOI: 10.1097/ICL.0b013e31825fed57.
  24. Fukuchi T, Wakai K, Suda K, et al. Incidence, severity and factors related to drug-induced keratoepitheliopathy with glaucoma medications. Clin Ophthalmol 2010;4:203–209. DOI: 10.2147/opth. s9716.
  25. Fukuda M, Inagaki S, Hagihara K, et al. Generic versions of latanoprost ophthalmic solution evaluated for safety to corneal epithelial cells. Atarashii Ganka (JEye) 2011;28:849–854.
  26. Fukuda M, Sasaki H. Quantitative evaluation of corneal epithelial injury caused by n-heptanol using a corneal resistance measuring device in vivo. Clin Ophthalmol 2012;6:585–593. DOI: 10.2147/OPTH.S30935.
  27. Wada T, Burke JA, Wheeler LA. Characteristic of brimonidine tartrate ophthalmic solution (ALPHAGAN 0.1%). Igaku Yakugaku 2012;67:547–555.
  28. Inoue J, Oka M, Aoyama Y, et al. Effects of anti-glaucoma eye drops on rabbit corneal epithelial cells. J St Marian Univ 2003;31:195–206.
  29. Hashimoto Y, Kitamoto K, Aihara M, et al. Toxicity profiles of fixed-combination eye drops for glaucoma therapy using cultivated human corneal epithelial sheets. Jpn J Ophthalmol 2020;64(3):304–311. DOI: 10.1007/s10384-020-00742-3.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.