Journal of Current Glaucoma Practice

Register      Login

VOLUME 14 , ISSUE 1 ( January-April, 2020 ) > List of Articles

Original Article

Early Glaucoma Discrimination Index

Hend Safwat, Elaraby Nassar, Afaf Rashwan

Keywords : Glaucoma, Optical coherence tomography, Retinal nerve fiber layer

Citation Information : Safwat H, Nassar E, Rashwan A. Early Glaucoma Discrimination Index. J Curr Glaucoma Pract 2020; 14 (1):16-24.

DOI: 10.5005/jp-journals-10078-1271

License: CC BY-NC 4.0

Published Online: 01-04-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Purpose: To develop a new structural algorithm derived from optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness and asymmetry and validate it as a discriminate among normal, suspect, and early primary open-angle glaucoma (POAG). Study design: A case-controlled observational clinical study. Materials and methods: In total, 150 subjects (299 eyes) were selected, 61 normal, 46 suspect, and 43 early glaucoma, from Al-Azhar University Hospitals. They were in fifth decade and free from any ocular or systemic diseases affecting the retinal nerve fiber layer. They were investigated by two consecutive perimetry (1 month apart), and three scans of circumpapillary retinal nerve fiber layer (cpRNFL) by using Nidek spectral domain (SD)-OCT 3000 Lite. The cpRNFL thickness (cpRNFLT) and inter-eye asymmetry parameters were analyzed among the three groups. Then some selected parameters were selected and analyzed using a binary logistic regression analysis for developing the new algorithm. The new algorithm was tested for the best fitting, accuracy, and diagnostic ability among the three groups and was validated in the suspect group. Results: The new algorithm model [early glaucoma discrimination index (EGDI)] works well with only four variables; whole cpRNFLT, inferior quadrant cpRNFLT, inferotemporal clock hour (CH) cpRNFLT, and absolute inter-eye inferior quadrants asymmetry. The highest area under the curve (AUC) obtained from the EGDI among the three groups was 0.854. The validation analysis in the suspect group revealed a higher diagnostic ability in discrimination of early glaucoma with AUC of 0.989 (0.976–1.003). Conclusion: The EGDI showed better diagnostic ability for diagnosis of glaucoma in the pre-perimetric stage. The new OCT algorithm is simple and can be run in any SD-OCT device without dependence on normative data.


PDF Share
  1. Broadway DC, Glaucoma: WHO has estimated that 4.5 million people are blind due to glaucoma. Available from: http://www.iapb.org/vision-2020/what-is-avoidable-blindness/glaucoma, accessed on 12 April 2016.
  2. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014;311(18):1901–1911. DOI: 10.1001/jama.2014.3192.
  3. Meier KL, Greenfield DS, Hilmantel G, et al. Special commentary: Food and drug administration and american glaucoma society co-sponsored workshop: the validity, reliability, and usability of glaucoma imaging devices. Ophthalmology 2014;121(11):2116–2123. DOI: 10.1016/j.ophtha.2014.05.024.
  4. Cheema A, Moore DB, Griffiths D. Spectral domain optical coherence tomography in glaucoma [updated 2015 Jan 27; cited 2015 Jan 27]. Available from: http://eyewiki.aao.org/Spectral_Domain_Optical_Coherence_Tomography_in_Glaucoma.
  5. Adhi M, Duker JS. Optical coherence tomography – current and future applications. Curr Opin Ophthalmol 2013;24(3):213–221. DOI: 10.1097/ICU.0b013e32835f8bf8.
  6. Kamppeter BA, Schubert KV, Budde WM, et al. Optical coherence tomography of the optic nerve head interindividual reproducibility. J Glaucoma 2006;15(3):248–254. DOI: 10.1097/01.ijg.0000212205.02771.b7.
  7. Garas A, Vargha P, Holló G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye 2011;25(1):57–65. DOI: 10.1038/eye.2010.139.
  8. González-García AO, Vizzeri G, Bowd C, et al. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with stratus optical coherence tomography measurements. Am J Ophthalmol 2009;147(6):1067–1074. DOI: 10.1016/j.ajo.2008.12.032.
  9. Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 2010;117(4):738–746. DOI: 10.1016/j.ophtha.2009.08.039.
  10. Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 2009;116(7):1257–1263. DOI: 10.1016/j.ophtha.2009.04.013.
  11. Sung KR, Kim DY, Park SB, et al. Comparison of retinal nerve fiber layer thickness measured by cirrus HD and stratus optical coherence tomography. Ophthalmology 2009;116(7):1264–1270. DOI: 10.1016/j.ophtha.2008.12.045.
  12. Garcia-Martin E, Pinilla I, Idoipe M. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using cirrus fourier-domain OCT. Acta Ophthalmol (Copenh) 2011;89(1):e23–e29. DOI: 10.1111/j.1755-3768.2010.02045.x.
  13. Mansoori T, Viswanath K, Balakrishna N. Reproducibility of peripapillary retinal nerve fibre layer thickness measurements with spectral domain optical coherence tomography in normal and glaucomatous eyes. Br J Ophthalmol 2011;95(5):685–688. DOI: 10.1136/bjo.2010.183020.
  14. Langenegger SJ, Funk J, Töteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 2011;52(6):3338–3344. DOI: 10.1167/iovs.10-6611.
  15. Serbecic N, Beutelspacher SC, Aboul-Enein FC, et al. Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography. Br J Ophthalmol 2011;95(6):804–810. DOI: 10.1136/bjo.2010.186221.
  16. Pierro L, Gagliardi M, Iuliano L, et al. Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Ophthalmol Vis Sci 2012;53(9):5912–5920. DOI: 10.1167/iovs.11-8644.
  17. Kita Y, Hollό G, Kita R, et al. Differences of intrasession reproducibility of circumpapillary total retinal thickness and circumpapillary retinal nerve fiber layer thickness measurements made with the RS-3000 optical coherence tomograph. PLoS ONE 2015;10(12):e0144721. DOI: 10.1371/journal.pone.0144721.
  18. K121622 510 (k) Summary about optical coherence tomography RS-3000. FDA approval letter to Nidek Co., Ltd. [published 2013 Mar 14; cited 2014 Jan 20]. Available from: https://510k.directory/clearances/K121622.
  19. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of retinal nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography (a pilot study). Arch Ophthalmol 1995;113(5):586–596. DOI: 10.1001/archopht.1995.01100050054031.
  20. Budenz DL, Anderson DR, Varma R, et al. Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology 2007;114(6):1046–1052. DOI: 10.1016/j.ophtha.2006.08.046.
  21. Bendschneider D, Tornow RP, Horn FK, et al. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma 2010;19(7):475–482. DOI: 10.1097/IJG.0b013e3181c4b0c7.
  22. Leite MT, Rao HL, Weinreb RN, et al. Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol 2011;151(1):85–92. DOI: 10.1016/j.ajo.2010.06.041.
  23. Buchser NM, Wollstein G, Ishikawa H, et al. Comparison of retinal nerve fiber layer thickness measurement bias and imprecision across three spectral domain optical coherence tomography devices. Invest Ophthalmol Vis Sci 2012;53(7):3742–3747. DOI: 10.1167/iovs.11-8432.
  24. Agarwal P, Saini VK, Gupta S, et al. Evaluation of central macular thickness and retinal nerve fiber layer thickness using spectral domain optical coherence tomography in a tertiary care hospital. J Curr Glaucoma Pract 2014;8(2):75–81. DOI: 10.5005/jp-journals-10008-1165.
  25. Ramakrishnan R, Mittal S, Ambatkar S, et al. Retinal nerve fibre layer thickness measurements in normal Indian population by optical coherence tomography. Indian J Ophthalmol 2006;54(1):11–16. DOI: 10.4103/0301-4738.21608.
  26. Kanamori A, Nakamura M, Escano MFT, et al. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 2003;135(4):513–520. DOI: 10.1016/s0002-9394(02)02003-2.
  27. Bowd C, Weinreb RN, Williams JM, et al. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol 2000;118(1):22–26. DOI: 10.1001/archopht.118.1.22.
  28. Liu X, Ling Y, Luo R, et al. Optical coherence tomography in measuring retinal nerve fiber layer thickness in normal subjects and patients with open-angle glaucoma. Chin Med J 2001;114(5):524–529.
  29. Frenkel S, Morgan JE, Blumenthal EZ. Histological measurement of retinal nerve fibre layer thickness. Eye 2005;19(5):491–498. DOI: 10.1038/sj.eye.6701569.
  30. Harizman N, Oliveira C, Chiang A, et al. The ISNT rule and differentiation of normal from glaucomatous eyes. Arch Ophthalmol 2006;124(11):1579–1583. DOI: 10.1001/archopht.124.11.1579.
  31. Lundmark PO, Skjöld GB, Nævdal PA, et al. Use of ISNT rule for optic disc evaluation in 40 to 79 year old patients seen in optometric practice. SJOVS 2010;3(1):16–22. DOI: 10.5384/SJOVS.vol3i1p16.
  32. Hong SW, Ahn MD, Kang SH, et al. Analysis of peripapillary retinal nerve fiber distribution in normal young adults. Invest Ophthalmol Vis Sci 2010;51(7):3515–3523. DOI: 10.1167/iovs.09-4888.
  33. Zhang X, Francis BA, Dastiridou A, et al. Longitudinal and cross-sectional analyses of age effects on retinal nerve fiber layer and ganglion cell complex thickness by Fourier-domain OCT. Translational Vision Science & Technology 2016;5(2):1–6. DOI: 10.1167/tvst.5.2.1.
  34. Alasil T, Wang K, Keane PA, et al. Analysis of normal retinal nerve fiber layer thickness by age, sex, and race using spectral domain optical coherence tomography. J Glaucoma 2013;22(7):532–541. DOI: 10.1097/IJG.0b013e318255bb4a.
  35. Sehi M, Grewal DS, Sheets CW, et al. Diagnostic ability of Fourier-domain vs time domain optical coherence tomography for glaucoma detection. Am J Ophthalmol 2009;148:597–605. DOI: 10.1016/j.ajo.2009.05.030
  36. Budenz D, Michael A, Chang R, et al. Sensitivity and specificity of the stratus OCT for perimetric glaucoma. Ophthalmology 2005;112(1):3–9. DOI: 10.1016/j.ophtha.2004.06.039.
  37. Bowd C, Zangwill LM, Berry CC, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001;42(9):1993–2003.
  38. Hwang YH, Kim YY. Glaucoma diagnostic ability of quadrant and clock-hour neuroretinal rim assessment using cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 2012;53(4):2226–2234. DOI: 10.1167/iovs.11-8689.
  39. Leung CK, Ye C, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a study on diagnostic agreement with Heidelberg retinal tomograph. Ophthalmology 2010;117(2):267–274. DOI: 10.1016/j.ophtha.2009.06.061.
  40. Park SB, Sung KR, Kang SY, et al. Comparison of glaucoma diagnostic capabilities of cirrus HD and stratus optical coherence tomography. Arch Ophthalmol 2009;127(12):1603–1609. DOI: 10.1001/archophthalmol.2009.296.
  41. Leite MT, Rao HL, Zangwill LM, et al. Comparison of the diagnostic accuracies of Spectralis, Cirrus and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 2011;118(7):1334–1339. DOI: 10.1016/j.ophtha.2010.11.029.
  42. Mwanza J-C, Oakley JD, Budenz DL, et al. Ability of the cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 2011;118(2):241–248. DOI: 10.1016/j.ophtha.2010.06.036.
  43. Hood DC, Raza AS, de Moraes CGV, et al. Glaucomatous damage of the macula. Prog Retin Eye Res 2013;32:1e21. DOI: 10.1016/j.preteyeres.2012.08.003.
  44. Pan Y, Varma R. Natural history of glaucoma. Indian J Ophthalmol 2011;59(suppl 1):S19–S23. DOI: 10.4103/0301-4738.73682.
  45. Jonas JB, Born AM. Optic disc photography in the diagnosis of glaucoma. In: Shaarawy TM, et al. GLAUCOMA: Medical Diagnosis & Therapy. 2nd ed., London: Elsevier Saunders; 2015. 209–220.
  46. Leung CKS, Choi N, Weinreb RN. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology 2010;117(12):2337–2344. DOI: 10.1016/j.ophtha.2010.04.002.
  47. Xu G, Weinreb RN, Leung CKS. Retinal nerve fiber layer progression in glaucoma a comparison between retinal nerve fiber layer thickness and retardance. Ophthalmology 2013;120(12):2493–2500. DOI: 10.1016/j.ophtha.2013.07.027.
  48. Finzi A, Strobbe E, Tassi F, et al. Hemifield pattern electroretinogram in ocular hypertension: comparison with frequency doubling technology and optical coherence tomography to detect early optic neuropathy. Dovepress 2014;2014:1929–1936. DOI: 10.2147/OPTH.S67193.
  49. Mwanza J, Durbin MK, Budenz DL. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the cirrus HD-OCT in healthy eyes. Am J Ophthalmol 2011;151(3):514–521. DOI: 10.1016/j.ajo.2010.09.015.
  50. Ghadiali Q, Hood DC, Lee C, et al. An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J Glaucoma 2008;17(5):333–340. DOI: 10.1097/IJG.0b013e3181650f8b.
  51. Sullivan-Mee M, Ruegg CC, Pensyl D, et al. Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for Identifying early primary open-angle glaucoma. Am J Ophthalmol 2013;156(3):567–577. DOI: 10.1016/j.ajo.2013.04.037.
  52. Park HYL, Shin HY, Yoon JY, et al. Intereye comparison of cirrus OCT in early glaucoma diagnosis and detecting photographic retinal nerve fiber layer abnormalities. Invest Ophthalmol Vis Sci 2015;56(3):1733–1742. DOI: 10.1167/iovs.14-15450.
  53. Asrani S, Rosdahl JA, Allingham R. Novel software strategy for glaucoma diagnosis asymmetry analysis of retinal thickness. Arch Ophthalmol 2011;129(9):1205–1211. DOI: 10.1001/archophthalmol.2011.242.
  54. Khanal S, Davey PG, Racette L, et al. Intraeye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open-angle glaucoma and normal tension glaucoma. J Optom 2016;9(2):118–125. DOI: 10.1016/j.optom.2015.10.002.
  55. Budenz DL. Symmetry between the right and left eyes of the normal retinal nerve fiber layer measured with optical coherence tomography (an AOS thesis). Trans Am Ophthalmol Soc 2008;106:252–275.
  56. Badalà F, Nouri-Mahdavi K, Raoof DA, et al. Optic disc and nerve fiber layer imaging to detect glaucoma. Arch Ophthalmol 2007;144(5):724–732. DOI: 10.1016/j.ajo.2007.07.010.
  57. Medeiros FA, Zangwill LM, Bowd C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005;139(1):44–55. DOI: 10.1016/j.ajo.2004.08.069.
  58. Pablo LE, Ferreras A, Pajarín AB, et al. Diagnostic ability of a linear discriminant function for optic nerve head parameters measured with optical coherence tomography for perimetric glaucoma. Eye 2010;24(6):1051–1057. DOI: 10.1038/eye.2009.245.
  59. Sugimoto K, Murata H, Hirasawa H, et al. Cross-sectional study: Does combining optical coherence tomography measurements using the ‘Random forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? Br J Ophthalmol 2013;3(10):e003114-1-7. DOI: 10.1136/bmjopen-2013-003114.
  60. Mwanza JC, Warren JL, Budenz DL. Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss. Invest Ophthalmol Vis Sci 2013;54(13):8393–8400. DOI: 10.1167/iovs.13-12749.
  61. Loewen NA, Zhang X, et al. Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography. Br J Ophthalmol 2015;99(9):1224–1229. DOI: 10.1136/bjophthalmol-2014-305907.
  62. Choi YJ, Jeoung JW, Park KH, et al. Clinical use of an optical coherence tomography linear discriminant function for differentiating glaucoma from normal eyes. J Glaucoma 2016;25(3):e162–e169. DOI: 10.1097/IJG.0000000000000210.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.