Journal of Current Glaucoma Practice

Register      Login

VOLUME 14 , ISSUE 1 ( January-April, 2020 ) > List of Articles

Original Article

Nonpenetrating Deep Sclerectomy for Progressive Glaucoma: Long-term (5-year) Follow-up of Intraocular Pressure Control and Visual Field Survival

Grant Slagle, Sylvia L Groth, Mario Montelongo, William E Sponsel

Keywords : Antiglaucoma, Cohort study, Glaucoma, Intraocular pressure, Medication, Mitomycin C, Nonpenetrating deep sclerectomy

Citation Information : Slagle G, Groth SL, Montelongo M, Sponsel WE. Nonpenetrating Deep Sclerectomy for Progressive Glaucoma: Long-term (5-year) Follow-up of Intraocular Pressure Control and Visual Field Survival. J Curr Glaucoma Pract 2020; 14 (1):3-9.

DOI: 10.5005/jp-journals-10078-1273

License: CC BY-NC 4.0

Published Online: 01-04-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Purpose: To monitor 5-year outcomes of nonpenetrating deep sclerectomy (NPDS) with mitomycin C (MMC) in a new consecutive patient cohort. Materials and methods: All eyes undergoing NPDS surgery between 1/08 and 6/12 were monitored for intraocular pressure (IOP), number of antiglaucoma medications (meds), and visual field indices [mean deviation (MD) and corrected pattern standard deviation (CPSD)], relative to the preoperative baseline using the two-tailed paired Student's t test. Results: Of 106 eyes undergoing NPDS with MMC, mean IOP was 19.7 ± 0.5 [sem] mm Hg preoperatively, 11.9 ± 0.5 at 3 months, 12.5 ± 0.6 at 6 months, 12.4 ± 0.5 at 12 months, 12.6 ± 0.6 at 18 months, 11.1 ± 0.6 at 2 years, 11.8 ± 0.5 at 2.5 years, 11.0 ± 0.5 at 3 years, 11.7 ± 0.5 at 3.5 years, 10.7 ± 0.7 at 4 years, 11.6 ± 0.5 at 4.5 years, and 12.4 ± 0.7 at 5 years (average IOP reduction of 7.8 mm Hg or 37%; p < 106) at 5 years. About 92% of eyes had stable IOP ≥5 and ≤21 mm Hg at 5 years. Mean preoperative meds 2.7 ± 0.1 was reduced to 0.40 ±0.09 at 3 months, 0.51 ± 0.1 at 6 months, 0.38 ± 0.08 at 12 months, 0.49 ± 0.09 at 18 months, 0.41 ± 0.09 at 2 years, 0.39 ± 0.09 at 2.5 years, 0.49 ± 0.1 at 3 years, 0.58 ± 0.1 at 3.5 years, 0.49 ± 0.1 at 4 years, 0.64 ± 0.1 at 4.5 years, and 0.52 ± 0.1 at 5 years, corresponding to mean reduction of 2.2 meds (81%; p < 1022) at 5 years. Mean deviation and CPSD were stable relative to baseline at all time intervals (R = 0.83–0.94; p < 0.0001). Conclusion: With appropriate postoperative management, eyes undergoing NPDS can maintain excellent IOP control with minimal medication use and maintain very stable visual fields over an extended time frame.

  1. Zimmerman TJ, Kooner KS, Ford VJ, et al. Trabeculectomy vs. nonpenetrating deep sclerectomy: a retrospective study of two procedures in phakic patients with glaucoma. Ophthalmic Surg 1984;15(9):734–740.
  2. Mermoud A, Schyder CC. Nonpenetrating filtering surgery in glaucoma. Curr Opin Ophthalmol 2000;11(2):151–157. DOI: 10.1097/00055735-200004000-00015.
  3. Neudorfer M, Sadetzki S, Anisimova S, et al. Nonpenetrating deep sclerectomy with the use of adjunctive Mitomycin C. Ophthal Surg Lasers Imag Ret 2004;35(1):6–9. DOI: 10.3928/1542-8877-20040101-032.
  4. Chiselita D. Non-penetrating deep sclerectomy versus trabeculectomy in primary open angle glaucoma surgery. Eye 2001;15(Pt 2):197–201. DOI: 10.1038/eye.2001.60.
  5. Lachkar Y, Neverauskiene J, Jeanteur-Lunel MN, et al. Nonpenetrating deep sclerectomy: a 6-year retrospective study. Eur J Ophthalmol 2004;14(1):26–36. DOI: 10.1177/112067210401400105.
  6. Roy S, Mermoud A. Deep sclerectomy. Glaucoma Surg 2017;59:36–42. DOI: 10.1159/000458484.
  7. Watson PG, Jakeman C, Ozturk M, et al. The complications of trabeculectomy (a 20-year follow-up). Eye 1990;4(3):425–438. DOI: 10.1038/eye.1990.54.
  8. Bahar I, Kaiserman I, Trope GE, et al. Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model. Brit J Ophthalmol 2007;91(12):1713–1714. DOI: 10.1136/bjo.2007.116632.
  9. Guedes RAP, Guedes VMP, Chaoubah A. Factors associated with non-penetrating deep sclerectomy failure in controlling intraocular pressure. Acta Ophthalmol 2011;89(5):58–61. DOI: 10.1111/j.1755-3768.2009.01630.
  10. Kozobolis VP, Christodoulakis EV, Tzanakis N, et al. Primary deep sclerectomy versus primary deep sclerectomy with the use of mitomycin C in primary open-angle glaucoma. J Glaucoma 2002;11(4):287–293. DOI: 10.1097/00061198-200208000-00003.
  11. Sponsel WE, Groth SL. Mitomycin-augmented non-penetrating deep sclerectomy: preoperative gonioscopy and postoperative perimetric, tonometric and medication trends. Brit J Ophthalmol 2013;97(3):357–361. DOI: 10.1136/bjophthalmol-2012-301886.
  12. Suominen S, Harju M, Kurvinen L, et al. Deep sclerectomy in normal-tension glaucoma with and without Mitomycin-c. Acta Ophthalmol 2013;92(7):701–706. DOI: 10.1111/aos.12305.
  13. Sponsel WE, Harrison J, Elliott WR, et al. Dorzolamide hydrochloride and visual function in normal eyes. Am J Ophthalmol 1997;123(6):759–766. DOI: 10.1016/s0002-9394(14)71124-9.
  14. Armstrong RA. When to use the Bonferroni correction. J Coll Optometr 2014;34(5):502–508. DOI: 10.1111/opo.12131.
  15. Arruabarrena C, Munoz-Negrete FJ, Marquez C, et al. Results of nonpenetrating deep sclerectomy in inflammatory glaucoma: one year follow up. Arch Spanish Soc Ophthalmol 2007;82(8):483–488. DOI: 10.4321/s0365-66912007000800006.
  16. Iwao K, Inatani M, Seto T, et al. Long-term outcomes and prognostic factors for trabeculectomy with Mitomycin C in eyes with uveitic glaucoma: a retrospective cohort study. J Glaucoma 2014;23(2):88–94. DOI: 10.1097/IJG.0b013e3182685167.
  17. Shaarawy T, Nguyen C, Schnyder C, et al. Comparative study between deep sclerectomy with and without collagen implant: long term follow up. Brit J Ophthalmol 2004;88(1):95–98. DOI: 10.1136/bjo.88.1.95.
  18. Lewin A, Brondeel R, Benmarhnia T, et al. Attrition bias related to missing outcome data: a longitudinal simulation study. Epidemiology 2018;29(1):87–95. DOI: 10.1097/EDE.0000000000000755.
  19. Shaarawy T, Mermoud A. Deep sclerectomy in one eye vs deep sclerectomy with collagen implant in the contralateral eye of the same patient: long-term follow-up. Eye (Lond) 2005;19(3):298–302. DOI: 10.1038/sj.eye.6701469.
  20. Cillino S, Di Pace F, Casuccio A, et al. Deep sclerectomy versus trabeculectomy with low-dosage Mitomycin C: four-year follow-up. Ophthalmologica 2008;222(2):81–87. DOI: 10.1159/000112623.
  21. Hondur A, Onol M, Hasanreisoglu B. Nonpenetrating glaucoma surgery: meta-analysis of recent results. J Glaucoma 2008;17(2):139–146. DOI: 10.1097/IJG.0b013e31814b98f7.
  22. Sponsel WE, Johnson SL, Trevino R, et al. Pattern electroretinography and visual evoked potential provide clinical evidence of CNS modulation of high and low contrast VEP latency in glaucoma. Trans Vis Sci Tech 2017;6(6):6. DOI: 10.1167/tvst.6.6.6.
  23. Anand N, Kumar A, Gupta A. Primary phakic deep sclerectomy augmented with mitomycin C: long term outcomes. J Glaucoma 2011;94(1):1571–1576. DOI: 10.1097/IJG.0b013e3181ccb926.
  24. Yazgan S, Ates H, Guven Yilmaz S, et al. Long-term results of up to 6 years of mitomycin-c augmented non-penetrating deep sclerectomy for pseudoexfoliation glaucoma. Acta Ophthalmol 2016;94(5):n/a. DOI: 10.1111/j.1755-3768.2016.0250.
  25. Ollikainen ML, Puustjärvi TJ, Rekonen PK, et al. Mitomycin C-augmented deep sclerectomy in primary open-angle glaucoma and exfoliation glaucoma: a three-year prospective study. Acta Ophthalmol 2011;89(6):548–555. DOI: 10.1111/j.1755-3768.2009.01772.
  26. Goldsmith JA, Ahmed IK, Crandall AS. Nonpenetrating glaucoma surgery. Ophthalmol Clin North Am 2005;18(3):443–460. DOI: 10.1016/j.ohc.2005.05.008, vii. Review.
  27. Bissig A, Rivier D, Zaninetti M, et al. Ten years follow-up after deep sclerectomy with collagen implant. J Glaucoma 2008;17(8):680–686. DOI: 10.1097/IJG.0b013e318182ed9e.
  28. Figus M, Lazzeri S, Nardi M, et al. Short-term changes in the optic nerve head and visual field after trabeculectomy. Eye 2011;25(8):1057–1063. DOI: 10.1038/eye.2011.119.
  29. Bertrand V, Fieuws S, Stalmans I, et al. Rates of visual field loss before and after trabeculectomy. Acta Ophthalmol 2014;92(2):116–120. DOI: 10.1111/aos.12073.
  30. Sponsel WE, Groth SL, Satsangi N, et al. Refined data analysis provides clinical evidence for central nervous system control of chronic glaucomatous neurodegeneration. Transl Vis Sci Technol 2014;6(3):1–13. DOI: 10.1167/tvst.3.3.1.
  31. Sponsel WE, Reilly MA, Maddess T. Definitive response to Denniss and Artes: the paired eyes and brain in one person are one unit. Transl Vis Sci Technol 2015;4(2):8. DOI: 10.1167/tvst.4.2.8.
  32. Reilly MA, Villareal A, Maddess T, et al. Refined frequency doubling perimetry analysis reaffirms central nervous system control of chronic glaucomatous neurodegeneration. Transl Vis Sci Technol 2015;4(3):7. DOI: 10.1167/tvst.4.3.7.
  33. Toris C, Gelfman C, Whitlock A, et al. Making basic science studies in glaucoma more clinically relevant: the need for a consensus. Ocul Pharmacol Ther 2017;33(7):501–518. DOI: 10.1089/jop.2017.0001.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.